InstantID-XS / app.py
XuDongZhou's picture
Update app.py
2792f5f verified
raw
history blame
15.3 kB
import cv2, os, math
import torch
import random
import numpy as np
import json
import spaces
import PIL
from PIL import Image
from typing import Tuple
import diffusers
from diffusers.utils import load_image
from diffusers import (
AutoencoderKL,
UNet2DConditionModel,
UniPCMultistepScheduler,
)
from huggingface_hub import hf_hub_download
from insightface.app import FaceAnalysis
from pipeline_controlnet_xs_sd_xl_instantid import StableDiffusionXLInstantIDXSPipeline, UNetControlNetXSModel
from utils.controlnet_xs import ControlNetXSAdapter
import gradio as gr
hf_hub_download(repo_id="RED-AIGC/InstantID-XS", filename="controlnetxs.bin", local_dir="./ckpt")
hf_hub_download(repo_id="RED-AIGC/InstantID-XS",filename="cross_attn.bin",local_dir="./ckpt",)
hf_hub_download(repo_id="RED-AIGC/InstantID-XS", filename="image_proj.bin", local_dir="./ckpt")
# global variable
MAX_SEED = np.iinfo(np.int32).max
device = "cuda" if torch.cuda.is_available() else "cpu"
weight_dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
with open('./style.json') as f:
style_lib = json.load(f)
STYLE_NAMES = list(style_lib.keys())
DEFAULT_STYLE_NAME = "Ordinary"
base_model = 'frankjoshua/realvisxlV40_v40Bakedvae'
vae_path = 'madebyollin/sdxl-vae-fp16-fix'
# ckpt = 'RED-AIGC/InstantID-XS'
image_proj_path = "./ckpt/image_proj.bin"
cnxs_path = "./ckpt/controlnetxs.bin"
cross_attn_path = "./ckpt/cross_attn.bin"
# Load face encoder
app = FaceAnalysis(
name="antelopev2",
root="./",
providers=["CPUExecutionProvider"],
)
app.prepare(ctx_id=0, det_size=(640, 640))
def get_ControlNetXS(base_model, cnxs_path, device, size_ratio=0.125, weight_dtype=torch.float16):
unet = UNet2DConditionModel.from_pretrained(base_model, subfolder="unet").to(device, dtype=weight_dtype)
controlnet = ControlNetXSAdapter.from_unet(unet, size_ratio=size_ratio, learn_time_embedding=True)
state_dict = torch.load(cnxs_path, map_location="cpu", weights_only=True)
ctrl_state_dict = {}
for key, value in state_dict.items():
if 'attn2.processor' not in key:
if 'ctrl_' in key and 'ctrl_to_base' not in key:
key = key.replace('ctrl_', '')
if 'up_blocks' in key:
key = key.replace('up_blocks', 'up_connections')
ctrl_state_dict[key] = value
controlnet.load_state_dict(ctrl_state_dict, strict=True)
controlnet.to(device, dtype=weight_dtype)
ControlNetXS = UNetControlNetXSModel.from_unet(unet, controlnet).to(device, dtype=weight_dtype)
return ControlNetXS
print('Get ControlNetXS...')
ControlNetXS = get_ControlNetXS(base_model, cnxs_path, device, size_ratio=0.125, weight_dtype=weight_dtype)
vae = AutoencoderKL.from_pretrained(vae_path)
print('Get Pipeline...')
pipe = StableDiffusionXLInstantIDXSPipeline.from_pretrained(
base_model,
vae=vae,
unet=ControlNetXS,
controlnet=None,
torch_dtype=weight_dtype,
)
# pipe.cuda(device=device, dtype=weight_dtype, use_xformers=True)
pipe.cuda(device=device, dtype=weight_dtype, use_xformers=False)
print('Load IP-Adapter...')
pipe.load_ip_adapter(image_proj_path, cross_attn_path)
pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.unet.config.ctrl_learn_time_embedding = True
pipe = pipe.to(device)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def remove_tips():
return gr.update(visible=False)
def get_example():
case = [
[
"./examples/1.jpg",
None,
"Ordinary",
""
],
[
"./examples/1.jpg",
"./examples/pose/pose1.jpg",
"Hanfu",
""
],
[
"./examples/2.jpg",
"./examples/pose/pose2.png",
"ZangZu",
""
],
[
"./examples/3.png",
"./examples/pose/pose3.png",
"QingQiu",
"",
],
[
"./examples/4.png",
"./examples/pose/pose2.png",
"(No style)",
"A man in suit",
],
[
"./examples/5.jpeg",
"./examples/pose/pose3.png",
"(No style)",
"Girl in white wedding dress",
],
[
"./examples/6.jpg",
"./examples/pose/pose4.jpeg",
"ZangZu",
"",
],
[
"./examples/7.jpeg",
"./examples/pose/pose3.png",
"ZangZu",
"",
],
]
return case
def convert_from_cv2_to_image(img: np.ndarray) -> Image:
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]):
stickwidth = 4
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
kps = np.array(kps)
w, h = image_pil.size
out_img = np.zeros([h, w, 3])
for i in range(len(limbSeq)):
index = limbSeq[i]
color = color_list[index[0]]
x = kps[index][:, 0]
y = kps[index][:, 1]
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
out_img = (out_img * 0.6).astype(np.uint8)
for idx_kp, kp in enumerate(kps):
color = color_list[idx_kp]
x, y = kp
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
out_img_pil = PIL.Image.fromarray(out_img.astype(np.uint8))
return out_img_pil
def resize_img(input_image,max_side=1280,min_side=1024,size=None,pad_to_max_side=False,mode=PIL.Image.BILINEAR,base_pixel_number=64,):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio * w), round(ratio * h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[
offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new
] = np.array(input_image)
input_image = Image.fromarray(res)
return input_image
def apply_style(style_params, positive: str, negative: str = ""):
p = style_params["prompt"].replace("{prompt}", positive)
n = style_params["negative_prompt"] + ' ' + negative
return p, n
def run_for_examples(face_file, pose_file, style, prompt, negative_prompt="", ):
return generate_image(
face_file,
pose_file,
style,
prompt,
negative_prompt,
20, # num_steps
0.9, # ControlNet strength
0.8, # Adapter strength
5.0, # guidance_scale
42, # seed
1280, # max side
)
@spaces.GPU
def generate_image(
face_image_path,
pose_image_path,
style_name,
prompt,
negative_prompt,
num_steps,
controlnet_conditioning_scale,
adapter_strength_ratio,
guidance_scale,
seed,
max_side,
progress=gr.Progress(track_tqdm=True),
):
if face_image_path is None:
raise gr.Error(f"Cannot find any input face image! Please upload the face image")
face_image = load_image(face_image_path)
face_image = resize_img(face_image, max_side=max_side)
# face_image = resize_img(face_image)
face_image_cv2 = convert_from_image_to_cv2(face_image)
height, width, _ = face_image_cv2.shape
# Extract face features
face_info = app.get(face_image_cv2)
if len(face_info) == 0:
raise gr.Error(f"Unable to detect a face in the image. Please upload a different photo with a clear face.")
face_info = sorted(
face_info,
key=lambda x: (x["bbox"][2] - x["bbox"][0]) * x["bbox"][3] - x["bbox"][1],
)[-1] # only use the maximum face
face_emb = torch.from_numpy(face_info.normed_embedding)
face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"])
style_params = style_lib[style_name][face_info["gender"]]
if prompt is None:
prompt = "a person"
prompt, negative_prompt = apply_style(style_params, prompt, negative_prompt)
if pose_image_path is not None:
pose_image = load_image(pose_image_path)
pose_image = resize_img(pose_image, max_side=max_side)
# pose_image = resize_img(pose_image)
pose_image_cv2 = convert_from_image_to_cv2(pose_image)
face_info = app.get(pose_image_cv2)
if len(face_info) == 0:
raise gr.Error(f"Cannot find any face in the reference image! Please upload another person image")
face_info = face_info[-1]
face_kps = draw_kps(pose_image, face_info["kps"])
width, height = face_kps.size
print(width, height)
print("Start inference...")
print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}")
# pipe.set_ip_adapter_scale(adapter_strength_ratio)
images = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=face_kps,
face_emb=face_emb,
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
ip_adapter_scale=float(adapter_strength_ratio),
num_inference_steps=num_steps,
guidance_scale=float(guidance_scale),
height=height,
width=width,
generator=torch.Generator(device=device).manual_seed(seed),
).images
return images[0], gr.update(visible=True)
title = r"""
<h1 align="center">InstantID-XS</h1>
"""
tips = r"""
### Usage tips of InstantID-XS
1. If you're not satisfied with the similarity, try increasing the weight of "ControlNet strength" and "Adapter Strength."
2. If you feel that the similarity is not high, you can increase the adapter strength appropriately.
3. If you want to achieve a pose image as similar as possible, please increase the ControlNet strength appropriately.
"""
css = """
.gradio-container {width: 85% !important}
"""
with gr.Blocks(css=css) as demo:
# description
gr.Markdown(title)
# gr.Markdown(description)
with gr.Row():
with gr.Column():
with gr.Row(equal_height=True):
# upload face image
face_file = gr.Image(label="Upload a photo of your face", type="filepath")
# optional: upload a reference pose image
pose_file = gr.Image(label="Upload a reference pose image (Optional)",type="filepath",)
# prompt
prompt = gr.Textbox(
label="Prompt",
info="Give simple prompt is enough to achieve good face fidelity",
placeholder="A photo of a person",
value="realistic, symmetrical hyperdetailed texture, masterpiece, enhanced details, perfect composition, authentic, natural posture",
)
submit = gr.Button("Submit", variant="primary")
style = gr.Dropdown(
label="Style",
info="If you want to generate images completely according to your own prompt, please choose '(No style)'",
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME
)
# strength
controlnet_conditioning_scale = gr.Slider(
label="ControlNet strength (for pose)",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.9,
)
adapter_strength_ratio = gr.Slider(
label="Adapter strength (for fidelity)",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.8,
)
with gr.Accordion(open=True, label="Advanced Options"):
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="low quality",
value="(lowres, low quality, worst quality:1.2), (text:1.2), nude, nsfw, watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
)
num_steps = gr.Slider(
label="Number of sample steps",
minimum=1,
maximum=100,
step=1,
value=20,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.1,
maximum=10.0,
step=0.1,
value=5.0,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
max_side = gr.Slider(
label="Max side",
minimum=512,
maximum=2048,
step=64,
value=1280,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Column(scale=1):
gallery = gr.Image(label="Generated Images")
usage_tips = gr.Markdown(label="InstantID Usage Tips", value=tips, visible=False)
submit.click(
fn=remove_tips,
outputs=usage_tips,
).then(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate_image,
inputs=[
face_file,
pose_file,
style,
prompt,
negative_prompt,
num_steps,
controlnet_conditioning_scale,
adapter_strength_ratio,
guidance_scale,
seed,
max_side,
],
outputs=[gallery, usage_tips],
)
gr.Examples(
examples=get_example(),
inputs=[face_file, pose_file, style, prompt],
fn=run_for_examples,
outputs=[gallery, usage_tips],
cache_examples=True,
)
# gr.Markdown(article)
demo.queue(api_open=False)
demo.launch()