import cv2, os, math import torch import random import numpy as np import json import spaces import PIL from PIL import Image from typing import Tuple import diffusers from diffusers.utils import load_image from diffusers import ( AutoencoderKL, UNet2DConditionModel, UniPCMultistepScheduler, ) from huggingface_hub import hf_hub_download from insightface.app import FaceAnalysis from pipeline_controlnet_xs_sd_xl_instantid import StableDiffusionXLInstantIDXSPipeline, UNetControlNetXSModel from utils.controlnet_xs import ControlNetXSAdapter import gradio as gr hf_hub_download(repo_id="RED-AIGC/InstantID-XS", filename="controlnetxs.bin", local_dir="./ckpt") hf_hub_download(repo_id="RED-AIGC/InstantID-XS",filename="cross_attn.bin",local_dir="./ckpt",) hf_hub_download(repo_id="RED-AIGC/InstantID-XS", filename="image_proj.bin", local_dir="./ckpt") # global variable MAX_SEED = np.iinfo(np.int32).max device = "cuda" if torch.cuda.is_available() else "cpu" weight_dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32 with open('./style.json') as f: style_lib = json.load(f) STYLE_NAMES = list(style_lib.keys()) DEFAULT_STYLE_NAME = "Ordinary" base_model = 'frankjoshua/realvisxlV40_v40Bakedvae' vae_path = 'madebyollin/sdxl-vae-fp16-fix' # ckpt = 'RED-AIGC/InstantID-XS' image_proj_path = "./ckpt/image_proj.bin" cnxs_path = "./ckpt/controlnetxs.bin" cross_attn_path = "./ckpt/cross_attn.bin" # Load face encoder app = FaceAnalysis( name="antelopev2", root="./", providers=["CPUExecutionProvider"], ) app.prepare(ctx_id=0, det_size=(640, 640)) def get_ControlNetXS(base_model, cnxs_path, device, size_ratio=0.125, weight_dtype=torch.float16): unet = UNet2DConditionModel.from_pretrained(base_model, subfolder="unet").to(device, dtype=weight_dtype) controlnet = ControlNetXSAdapter.from_unet(unet, size_ratio=size_ratio, learn_time_embedding=True) state_dict = torch.load(cnxs_path, map_location="cpu", weights_only=True) ctrl_state_dict = {} for key, value in state_dict.items(): if 'attn2.processor' not in key: if 'ctrl_' in key and 'ctrl_to_base' not in key: key = key.replace('ctrl_', '') if 'up_blocks' in key: key = key.replace('up_blocks', 'up_connections') ctrl_state_dict[key] = value controlnet.load_state_dict(ctrl_state_dict, strict=True) controlnet.to(device, dtype=weight_dtype) ControlNetXS = UNetControlNetXSModel.from_unet(unet, controlnet).to(device, dtype=weight_dtype) return ControlNetXS print('Get ControlNetXS...') ControlNetXS = get_ControlNetXS(base_model, cnxs_path, device, size_ratio=0.125, weight_dtype=weight_dtype) vae = AutoencoderKL.from_pretrained(vae_path) print('Get Pipeline...') pipe = StableDiffusionXLInstantIDXSPipeline.from_pretrained( base_model, vae=vae, unet=ControlNetXS, controlnet=None, torch_dtype=weight_dtype, ) # pipe.cuda(device=device, dtype=weight_dtype, use_xformers=True) pipe.cuda(device=device, dtype=weight_dtype, use_xformers=False) print('Load IP-Adapter...') pipe.load_ip_adapter(image_proj_path, cross_attn_path) pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.unet.config.ctrl_learn_time_embedding = True pipe = pipe.to(device) def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def remove_tips(): return gr.update(visible=False) def get_example(): case = [ [ "./examples/1.jpg", None, "Ordinary", "" ], [ "./examples/1.jpg", "./examples/pose/pose1.jpg", "Hanfu", "" ], [ "./examples/2.jpg", "./examples/pose/pose2.png", "ZangZu", "" ], [ "./examples/3.png", "./examples/pose/pose3.png", "QingQiu", "", ], [ "./examples/4.png", "./examples/pose/pose2.png", "(No style)", "A man in suit", ], [ "./examples/5.jpeg", "./examples/pose/pose3.png", "(No style)", "Girl in white wedding dress", ], [ "./examples/6.jpg", "./examples/pose/pose4.jpeg", "ZangZu", "", ], [ "./examples/7.jpeg", "./examples/pose/pose3.png", "ZangZu", "", ], ] return case def convert_from_cv2_to_image(img: np.ndarray) -> Image: return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) def convert_from_image_to_cv2(img: Image) -> np.ndarray: return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]): stickwidth = 4 limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]]) kps = np.array(kps) w, h = image_pil.size out_img = np.zeros([h, w, 3]) for i in range(len(limbSeq)): index = limbSeq[i] color = color_list[index[0]] x = kps[index][:, 0] y = kps[index][:, 1] length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5 angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1])) polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1) out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color) out_img = (out_img * 0.6).astype(np.uint8) for idx_kp, kp in enumerate(kps): color = color_list[idx_kp] x, y = kp out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1) out_img_pil = PIL.Image.fromarray(out_img.astype(np.uint8)) return out_img_pil def resize_img(input_image,max_side=1280,min_side=1024,size=None,pad_to_max_side=False,mode=PIL.Image.BILINEAR,base_pixel_number=64,): w, h = input_image.size if size is not None: w_resize_new, h_resize_new = size else: ratio = min_side / min(h, w) w, h = round(ratio * w), round(ratio * h) ratio = max_side / max(h, w) input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode) w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number input_image = input_image.resize([w_resize_new, h_resize_new], mode) if pad_to_max_side: res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 offset_x = (max_side - w_resize_new) // 2 offset_y = (max_side - h_resize_new) // 2 res[ offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new ] = np.array(input_image) input_image = Image.fromarray(res) return input_image def apply_style(style_params, positive: str, negative: str = ""): p = style_params["prompt"].replace("{prompt}", positive) n = style_params["negative_prompt"] + ' ' + negative return p, n def run_for_examples(face_file, pose_file, style, prompt, negative_prompt="", ): return generate_image( face_file, pose_file, style, prompt, negative_prompt, 20, # num_steps 0.9, # ControlNet strength 0.8, # Adapter strength 5.0, # guidance_scale 42, # seed 1280, # max side ) @spaces.GPU def generate_image( face_image_path, pose_image_path, style_name, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, adapter_strength_ratio, guidance_scale, seed, max_side, progress=gr.Progress(track_tqdm=True), ): if face_image_path is None: raise gr.Error(f"Cannot find any input face image! Please upload the face image") face_image = load_image(face_image_path) face_image = resize_img(face_image, max_side=max_side) # face_image = resize_img(face_image) face_image_cv2 = convert_from_image_to_cv2(face_image) height, width, _ = face_image_cv2.shape # Extract face features face_info = app.get(face_image_cv2) if len(face_info) == 0: raise gr.Error(f"Unable to detect a face in the image. Please upload a different photo with a clear face.") face_info = sorted( face_info, key=lambda x: (x["bbox"][2] - x["bbox"][0]) * x["bbox"][3] - x["bbox"][1], )[-1] # only use the maximum face face_emb = torch.from_numpy(face_info.normed_embedding) face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"]) style_params = style_lib[style_name][face_info["gender"]] if prompt is None: prompt = "a person" prompt, negative_prompt = apply_style(style_params, prompt, negative_prompt) if pose_image_path is not None: pose_image = load_image(pose_image_path) pose_image = resize_img(pose_image, max_side=max_side) # pose_image = resize_img(pose_image) pose_image_cv2 = convert_from_image_to_cv2(pose_image) face_info = app.get(pose_image_cv2) if len(face_info) == 0: raise gr.Error(f"Cannot find any face in the reference image! Please upload another person image") face_info = face_info[-1] face_kps = draw_kps(pose_image, face_info["kps"]) width, height = face_kps.size print(width, height) print("Start inference...") print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}") # pipe.set_ip_adapter_scale(adapter_strength_ratio) images = pipe( prompt=prompt, negative_prompt=negative_prompt, image=face_kps, face_emb=face_emb, controlnet_conditioning_scale=float(controlnet_conditioning_scale), ip_adapter_scale=float(adapter_strength_ratio), num_inference_steps=num_steps, guidance_scale=float(guidance_scale), height=height, width=width, generator=torch.Generator(device=device).manual_seed(seed), ).images return images[0], gr.update(visible=True) title = r"""