File size: 15,277 Bytes
671da46
4375fb1
0b5305f
4375fb1
2792f5f
4375fb1
0b5305f
4375fb1
 
 
0b5305f
4375fb1
 
0b5305f
4375fb1
 
 
 
 
0b5305f
4375fb1
 
 
 
 
 
 
2792f5f
e9cfa60
4375fb1
 
 
ef580d7
 
 
 
4375fb1
 
0b5305f
4375fb1
 
2792f5f
 
 
 
e9cfa60
4375fb1
 
 
d315342
4375fb1
a69f013
 
 
4375fb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a59210
4375fb1
2a59210
4375fb1
2a59210
 
4375fb1
2a59210
4375fb1
 
 
 
 
 
d315342
 
2a59210
d315342
4375fb1
 
 
 
2a59210
4375fb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9cfa60
2792f5f
4375fb1
 
49091f8
e9cfa60
 
2792f5f
e9cfa60
 
 
 
 
2792f5f
e9cfa60
 
 
 
 
2792f5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4375fb1
d4012a9
4375fb1
 
 
 
 
 
 
 
 
e599390
 
c1bd335
e599390
c1bd335
e599390
c1bd335
e599390
c1bd335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9cfa60
4375fb1
 
 
 
 
 
 
 
 
 
 
0b5305f
4375fb1
 
 
 
 
 
 
 
 
0b5305f
2792f5f
 
 
 
4375fb1
2792f5f
4b987e4
 
 
 
 
 
 
 
 
 
 
 
 
 
4375fb1
 
 
ef56347
e9cfa60
0b5305f
 
4375fb1
 
 
0b5305f
4375fb1
846a9b5
0b5305f
 
 
4375fb1
e9cfa60
4375fb1
 
 
846a9b5
e143019
4375fb1
 
 
 
 
 
 
e9cfa60
4375fb1
 
 
 
 
0b5305f
4375fb1
 
2792f5f
 
 
 
 
 
4375fb1
 
846a9b5
e143019
4375fb1
 
 
 
 
e143019
4375fb1
 
 
 
 
40535be
4375fb1
 
 
40535be
4375fb1
0b5305f
 
4375fb1
afa4fcf
40535be
a72163b
4375fb1
40535be
0b5305f
4375fb1
 
 
0b5305f
4375fb1
0b5305f
146a3f2
 
 
0b5305f
100cc3f
 
 
 
 
 
0b5305f
4375fb1
0b5305f
40535be
0b5305f
4375fb1
 
146a3f2
0b5305f
4375fb1
 
 
 
d315342
4375fb1
d315342
4375fb1
 
 
0b5305f
4375fb1
c90bcd7
e9cfa60
0b5305f
 
4375fb1
0b5305f
e9cfa60
80bc4b1
2792f5f
e9cfa60
 
 
 
4375fb1
 
100cc3f
b9227fd
4375fb1
 
e9cfa60
4375fb1
 
100cc3f
b9227fd
671da46
4375fb1
 
0b5305f
 
8650403
4375fb1
 
 
7d0a469
0b5305f
4375fb1
 
 
 
 
 
191a7f6
0b5305f
 
4375fb1
0b5305f
 
4375fb1
0b5305f
4375fb1
 
 
 
0b5305f
4375fb1
0b5305f
846a9b5
 
 
 
 
 
 
0b5305f
4375fb1
 
 
 
e486f8b
4375fb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9cfa60
4375fb1
 
 
 
 
 
 
846a9b5
4375fb1
 
 
 
 
 
2792f5f
4375fb1
 
 
0b5305f
 
451d16c
4375fb1
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
import cv2, os, math
import torch
import random
import numpy as np
import json 
import spaces

import PIL
from PIL import Image
from typing import Tuple

import diffusers
from diffusers.utils import load_image

from diffusers import (
    AutoencoderKL,
    UNet2DConditionModel,
    UniPCMultistepScheduler,
)

from huggingface_hub import hf_hub_download

from insightface.app import FaceAnalysis

from pipeline_controlnet_xs_sd_xl_instantid import StableDiffusionXLInstantIDXSPipeline, UNetControlNetXSModel

from utils.controlnet_xs import ControlNetXSAdapter



import gradio as gr

hf_hub_download(repo_id="RED-AIGC/InstantID-XS", filename="controlnetxs.bin", local_dir="./ckpt")
hf_hub_download(repo_id="RED-AIGC/InstantID-XS",filename="cross_attn.bin",local_dir="./ckpt",)
hf_hub_download(repo_id="RED-AIGC/InstantID-XS", filename="image_proj.bin", local_dir="./ckpt")


# global variable
MAX_SEED = np.iinfo(np.int32).max
device = "cuda" if torch.cuda.is_available() else "cpu"
weight_dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32

with open('./style.json') as f:
    style_lib = json.load(f)
STYLE_NAMES = list(style_lib.keys())
DEFAULT_STYLE_NAME = "Ordinary"

base_model = 'frankjoshua/realvisxlV40_v40Bakedvae'
vae_path = 'madebyollin/sdxl-vae-fp16-fix'
# ckpt = 'RED-AIGC/InstantID-XS'

image_proj_path = "./ckpt/image_proj.bin"
cnxs_path =  "./ckpt/controlnetxs.bin"
cross_attn_path = "./ckpt/cross_attn.bin"


# Load face encoder
app = FaceAnalysis(
    name="antelopev2",
    root="./",
    providers=["CPUExecutionProvider"],
)
app.prepare(ctx_id=0, det_size=(640, 640))


def get_ControlNetXS(base_model, cnxs_path, device, size_ratio=0.125, weight_dtype=torch.float16):
    unet = UNet2DConditionModel.from_pretrained(base_model, subfolder="unet").to(device, dtype=weight_dtype)
    controlnet = ControlNetXSAdapter.from_unet(unet, size_ratio=size_ratio, learn_time_embedding=True)
    state_dict = torch.load(cnxs_path, map_location="cpu", weights_only=True)
    ctrl_state_dict = {}
    for key, value in state_dict.items():
        if 'attn2.processor' not in key:
            if 'ctrl_' in key and 'ctrl_to_base' not in key:
                key = key.replace('ctrl_', '')
            if 'up_blocks' in key:
                key = key.replace('up_blocks', 'up_connections')
            ctrl_state_dict[key] = value
    controlnet.load_state_dict(ctrl_state_dict, strict=True)
    controlnet.to(device, dtype=weight_dtype)
    ControlNetXS = UNetControlNetXSModel.from_unet(unet, controlnet).to(device, dtype=weight_dtype)
    
    return ControlNetXS

print('Get ControlNetXS...')
ControlNetXS = get_ControlNetXS(base_model, cnxs_path, device, size_ratio=0.125, weight_dtype=weight_dtype)

vae = AutoencoderKL.from_pretrained(vae_path)

print('Get Pipeline...')
pipe = StableDiffusionXLInstantIDXSPipeline.from_pretrained(
    base_model,
    vae=vae,
    unet=ControlNetXS,
    controlnet=None,
    torch_dtype=weight_dtype,
)

# pipe.cuda(device=device, dtype=weight_dtype, use_xformers=True)
pipe.cuda(device=device, dtype=weight_dtype, use_xformers=False)

print('Load IP-Adapter...')
pipe.load_ip_adapter(image_proj_path, cross_attn_path)

pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.unet.config.ctrl_learn_time_embedding = True
pipe = pipe.to(device)


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def remove_tips():
    return gr.update(visible=False)

def get_example():
    case = [
        [
            "./examples/1.jpg",
            None,
            "Ordinary",
            ""
        ],
        [
            "./examples/1.jpg",
            "./examples/pose/pose1.jpg",
            "Hanfu",
            ""
        ],
        [
            "./examples/2.jpg",
            "./examples/pose/pose2.png",
            "ZangZu",
            ""
        ],
        [
            "./examples/3.png",
            "./examples/pose/pose3.png",
            "QingQiu",
            "",
        ],
        [
            "./examples/4.png",
            "./examples/pose/pose2.png",
            "(No style)",
            "A man in suit",
        ],

        [
            "./examples/5.jpeg",
            "./examples/pose/pose3.png",
            "(No style)",
            "Girl in white wedding dress",
        ],
        [
            "./examples/6.jpg",
            "./examples/pose/pose4.jpeg",
            "ZangZu",
            "",
        ],
        [
            "./examples/7.jpeg",
            "./examples/pose/pose3.png",
            "ZangZu",
            "",
        ],
    ]
    return case


def convert_from_cv2_to_image(img: np.ndarray) -> Image:
    return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))

def convert_from_image_to_cv2(img: Image) -> np.ndarray:
    return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)


def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]):
    
    stickwidth = 4
    limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
    kps = np.array(kps)

    w, h = image_pil.size
    out_img = np.zeros([h, w, 3])

    for i in range(len(limbSeq)):
        index = limbSeq[i]
        color = color_list[index[0]]

        x = kps[index][:, 0]
        y = kps[index][:, 1]
        length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
        angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
        polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
        out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
    out_img = (out_img * 0.6).astype(np.uint8)

    for idx_kp, kp in enumerate(kps):
        color = color_list[idx_kp]
        x, y = kp
        out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)

    out_img_pil = PIL.Image.fromarray(out_img.astype(np.uint8))
    return out_img_pil

def resize_img(input_image,max_side=1280,min_side=1024,size=None,pad_to_max_side=False,mode=PIL.Image.BILINEAR,base_pixel_number=64,):
    w, h = input_image.size
    if size is not None:
        w_resize_new, h_resize_new = size
    else:
        ratio = min_side / min(h, w)
        w, h = round(ratio * w), round(ratio * h)
        ratio = max_side / max(h, w)
        input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
        w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
        h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
    input_image = input_image.resize([w_resize_new, h_resize_new], mode)

    if pad_to_max_side:
        res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
        offset_x = (max_side - w_resize_new) // 2
        offset_y = (max_side - h_resize_new) // 2
        res[
            offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new
        ] = np.array(input_image)
        input_image = Image.fromarray(res)
    return input_image

def apply_style(style_params, positive: str, negative: str = ""):
    p = style_params["prompt"].replace("{prompt}", positive)
    n = style_params["negative_prompt"] + ' ' + negative
    return p, n

def run_for_examples(face_file, pose_file, style, prompt, negative_prompt="", ):
    return generate_image(
        face_file,
        pose_file,
        style, 
        prompt,
        negative_prompt,
        20,  # num_steps
        0.9,  # ControlNet strength
        0.8,  # Adapter strength
        5.0,  # guidance_scale
        42,  # seed
        1280, # max side
    )

@spaces.GPU
def generate_image(
    face_image_path,
    pose_image_path,
    style_name, 
    prompt,
    negative_prompt,
    num_steps,
    controlnet_conditioning_scale,
    adapter_strength_ratio,
    guidance_scale,
    seed,
    max_side,
    progress=gr.Progress(track_tqdm=True),
):

    if face_image_path is None:
        raise gr.Error(f"Cannot find any input face image! Please upload the face image")


    face_image = load_image(face_image_path)
    face_image = resize_img(face_image, max_side=max_side)
    # face_image = resize_img(face_image)
    face_image_cv2 = convert_from_image_to_cv2(face_image)
    height, width, _ = face_image_cv2.shape

    # Extract face features
    face_info = app.get(face_image_cv2)

    if len(face_info) == 0:
        raise gr.Error(f"Unable to detect a face in the image. Please upload a different photo with a clear face.")

    face_info = sorted(
        face_info,
        key=lambda x: (x["bbox"][2] - x["bbox"][0]) * x["bbox"][3] - x["bbox"][1],
    )[-1]  # only use the maximum face

    face_emb = torch.from_numpy(face_info.normed_embedding)
    face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"])

    style_params = style_lib[style_name][face_info["gender"]]
    if prompt is None:
        prompt = "a person"
    prompt, negative_prompt = apply_style(style_params, prompt, negative_prompt)

    if pose_image_path is not None:
        pose_image = load_image(pose_image_path)
        pose_image = resize_img(pose_image, max_side=max_side)
        # pose_image = resize_img(pose_image)
        pose_image_cv2 = convert_from_image_to_cv2(pose_image)

        face_info = app.get(pose_image_cv2)

        if len(face_info) == 0:
            raise gr.Error(f"Cannot find any face in the reference image! Please upload another person image")

        face_info = face_info[-1]
        face_kps = draw_kps(pose_image, face_info["kps"])

        width, height = face_kps.size
    print(width, height)
    print("Start inference...")
    print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}")

    # pipe.set_ip_adapter_scale(adapter_strength_ratio)
    images = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        image=face_kps,
        face_emb=face_emb,
        controlnet_conditioning_scale=float(controlnet_conditioning_scale),
        ip_adapter_scale=float(adapter_strength_ratio),
        num_inference_steps=num_steps,
        guidance_scale=float(guidance_scale),
        height=height,
        width=width,
        generator=torch.Generator(device=device).manual_seed(seed),
    ).images

    return images[0], gr.update(visible=True)

title = r"""
<h1 align="center">InstantID-XS</h1>
"""

tips = r"""
### Usage tips of InstantID-XS
1. If you're not satisfied with the similarity, try increasing the weight of "ControlNet strength" and "Adapter Strength."    
2. If you feel that the similarity is not high, you can increase the adapter strength appropriately. 
3. If you want to achieve a pose image as similar as possible, please increase the ControlNet strength appropriately.
"""
css = """
.gradio-container {width: 85% !important}
"""

with gr.Blocks(css=css) as demo:
    # description
    gr.Markdown(title)
    # gr.Markdown(description)

    with gr.Row():
        with gr.Column():
            with gr.Row(equal_height=True):
                # upload face image
                face_file = gr.Image(label="Upload a photo of your face", type="filepath")
                # optional: upload a reference pose image
                pose_file = gr.Image(label="Upload a reference pose image (Optional)",type="filepath",)

            # prompt
            prompt = gr.Textbox(
                label="Prompt",
                info="Give simple prompt is enough to achieve good face fidelity",
                placeholder="A photo of a person",
                value="realistic, symmetrical hyperdetailed texture, masterpiece, enhanced details, perfect composition, authentic, natural posture",
            )

            submit = gr.Button("Submit", variant="primary")

            style = gr.Dropdown(
                label="Style", 
                info="If you want to generate images completely according to your own prompt, please choose '(No style)'",
                choices=STYLE_NAMES, 
                value=DEFAULT_STYLE_NAME
            )
                
            # strength
            controlnet_conditioning_scale = gr.Slider(
                label="ControlNet strength (for pose)",
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=0.9,
            )
            adapter_strength_ratio = gr.Slider(
                label="Adapter strength (for fidelity)",
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=0.8,
            )

            with gr.Accordion(open=True, label="Advanced Options"):
                negative_prompt = gr.Textbox(
                    label="Negative Prompt",
                    placeholder="low quality",
                    value="(lowres, low quality, worst quality:1.2), (text:1.2), nude, nsfw, watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
                )
                num_steps = gr.Slider(
                    label="Number of sample steps",
                    minimum=1,
                    maximum=100,
                    step=1,
                    value=20,
                ) 
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.1,
                    maximum=10.0,
                    step=0.1,
                    value=5.0,
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=42,
                )
                max_side = gr.Slider(
                    label="Max side",
                    minimum=512,
                    maximum=2048,
                    step=64,
                    value=1280,
                )

                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

        with gr.Column(scale=1):
            gallery = gr.Image(label="Generated Images")
            usage_tips = gr.Markdown(label="InstantID Usage Tips", value=tips, visible=False)

        submit.click(
            fn=remove_tips,
            outputs=usage_tips,
        ).then(
            fn=randomize_seed_fn,
            inputs=[seed, randomize_seed],
            outputs=seed,
            queue=False,
            api_name=False,
        ).then(
            fn=generate_image,
            inputs=[
                face_file,
                pose_file,
                style,
                prompt,
                negative_prompt,
                num_steps,
                controlnet_conditioning_scale,
                adapter_strength_ratio,
                guidance_scale,
                seed,
                max_side,
            ],
            outputs=[gallery, usage_tips],
        )

    gr.Examples(
        examples=get_example(),
        inputs=[face_file, pose_file, style, prompt],
        fn=run_for_examples,
        outputs=[gallery, usage_tips],
        cache_examples=True,
    )

    # gr.Markdown(article)

demo.queue(api_open=False)
demo.launch()