Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,277 Bytes
671da46 4375fb1 0b5305f 4375fb1 2792f5f 4375fb1 0b5305f 4375fb1 0b5305f 4375fb1 0b5305f 4375fb1 0b5305f 4375fb1 2792f5f e9cfa60 4375fb1 ef580d7 4375fb1 0b5305f 4375fb1 2792f5f e9cfa60 4375fb1 d315342 4375fb1 a69f013 4375fb1 2a59210 4375fb1 2a59210 4375fb1 2a59210 4375fb1 2a59210 4375fb1 d315342 2a59210 d315342 4375fb1 2a59210 4375fb1 e9cfa60 2792f5f 4375fb1 49091f8 e9cfa60 2792f5f e9cfa60 2792f5f e9cfa60 2792f5f 4375fb1 d4012a9 4375fb1 e599390 c1bd335 e599390 c1bd335 e599390 c1bd335 e599390 c1bd335 e9cfa60 4375fb1 0b5305f 4375fb1 0b5305f 2792f5f 4375fb1 2792f5f 4b987e4 4375fb1 ef56347 e9cfa60 0b5305f 4375fb1 0b5305f 4375fb1 846a9b5 0b5305f 4375fb1 e9cfa60 4375fb1 846a9b5 e143019 4375fb1 e9cfa60 4375fb1 0b5305f 4375fb1 2792f5f 4375fb1 846a9b5 e143019 4375fb1 e143019 4375fb1 40535be 4375fb1 40535be 4375fb1 0b5305f 4375fb1 afa4fcf 40535be a72163b 4375fb1 40535be 0b5305f 4375fb1 0b5305f 4375fb1 0b5305f 146a3f2 0b5305f 100cc3f 0b5305f 4375fb1 0b5305f 40535be 0b5305f 4375fb1 146a3f2 0b5305f 4375fb1 d315342 4375fb1 d315342 4375fb1 0b5305f 4375fb1 c90bcd7 e9cfa60 0b5305f 4375fb1 0b5305f e9cfa60 80bc4b1 2792f5f e9cfa60 4375fb1 100cc3f b9227fd 4375fb1 e9cfa60 4375fb1 100cc3f b9227fd 671da46 4375fb1 0b5305f 8650403 4375fb1 7d0a469 0b5305f 4375fb1 191a7f6 0b5305f 4375fb1 0b5305f 4375fb1 0b5305f 4375fb1 0b5305f 4375fb1 0b5305f 846a9b5 0b5305f 4375fb1 e486f8b 4375fb1 e9cfa60 4375fb1 846a9b5 4375fb1 2792f5f 4375fb1 0b5305f 451d16c 4375fb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
import cv2, os, math
import torch
import random
import numpy as np
import json
import spaces
import PIL
from PIL import Image
from typing import Tuple
import diffusers
from diffusers.utils import load_image
from diffusers import (
AutoencoderKL,
UNet2DConditionModel,
UniPCMultistepScheduler,
)
from huggingface_hub import hf_hub_download
from insightface.app import FaceAnalysis
from pipeline_controlnet_xs_sd_xl_instantid import StableDiffusionXLInstantIDXSPipeline, UNetControlNetXSModel
from utils.controlnet_xs import ControlNetXSAdapter
import gradio as gr
hf_hub_download(repo_id="RED-AIGC/InstantID-XS", filename="controlnetxs.bin", local_dir="./ckpt")
hf_hub_download(repo_id="RED-AIGC/InstantID-XS",filename="cross_attn.bin",local_dir="./ckpt",)
hf_hub_download(repo_id="RED-AIGC/InstantID-XS", filename="image_proj.bin", local_dir="./ckpt")
# global variable
MAX_SEED = np.iinfo(np.int32).max
device = "cuda" if torch.cuda.is_available() else "cpu"
weight_dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
with open('./style.json') as f:
style_lib = json.load(f)
STYLE_NAMES = list(style_lib.keys())
DEFAULT_STYLE_NAME = "Ordinary"
base_model = 'frankjoshua/realvisxlV40_v40Bakedvae'
vae_path = 'madebyollin/sdxl-vae-fp16-fix'
# ckpt = 'RED-AIGC/InstantID-XS'
image_proj_path = "./ckpt/image_proj.bin"
cnxs_path = "./ckpt/controlnetxs.bin"
cross_attn_path = "./ckpt/cross_attn.bin"
# Load face encoder
app = FaceAnalysis(
name="antelopev2",
root="./",
providers=["CPUExecutionProvider"],
)
app.prepare(ctx_id=0, det_size=(640, 640))
def get_ControlNetXS(base_model, cnxs_path, device, size_ratio=0.125, weight_dtype=torch.float16):
unet = UNet2DConditionModel.from_pretrained(base_model, subfolder="unet").to(device, dtype=weight_dtype)
controlnet = ControlNetXSAdapter.from_unet(unet, size_ratio=size_ratio, learn_time_embedding=True)
state_dict = torch.load(cnxs_path, map_location="cpu", weights_only=True)
ctrl_state_dict = {}
for key, value in state_dict.items():
if 'attn2.processor' not in key:
if 'ctrl_' in key and 'ctrl_to_base' not in key:
key = key.replace('ctrl_', '')
if 'up_blocks' in key:
key = key.replace('up_blocks', 'up_connections')
ctrl_state_dict[key] = value
controlnet.load_state_dict(ctrl_state_dict, strict=True)
controlnet.to(device, dtype=weight_dtype)
ControlNetXS = UNetControlNetXSModel.from_unet(unet, controlnet).to(device, dtype=weight_dtype)
return ControlNetXS
print('Get ControlNetXS...')
ControlNetXS = get_ControlNetXS(base_model, cnxs_path, device, size_ratio=0.125, weight_dtype=weight_dtype)
vae = AutoencoderKL.from_pretrained(vae_path)
print('Get Pipeline...')
pipe = StableDiffusionXLInstantIDXSPipeline.from_pretrained(
base_model,
vae=vae,
unet=ControlNetXS,
controlnet=None,
torch_dtype=weight_dtype,
)
# pipe.cuda(device=device, dtype=weight_dtype, use_xformers=True)
pipe.cuda(device=device, dtype=weight_dtype, use_xformers=False)
print('Load IP-Adapter...')
pipe.load_ip_adapter(image_proj_path, cross_attn_path)
pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.unet.config.ctrl_learn_time_embedding = True
pipe = pipe.to(device)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def remove_tips():
return gr.update(visible=False)
def get_example():
case = [
[
"./examples/1.jpg",
None,
"Ordinary",
""
],
[
"./examples/1.jpg",
"./examples/pose/pose1.jpg",
"Hanfu",
""
],
[
"./examples/2.jpg",
"./examples/pose/pose2.png",
"ZangZu",
""
],
[
"./examples/3.png",
"./examples/pose/pose3.png",
"QingQiu",
"",
],
[
"./examples/4.png",
"./examples/pose/pose2.png",
"(No style)",
"A man in suit",
],
[
"./examples/5.jpeg",
"./examples/pose/pose3.png",
"(No style)",
"Girl in white wedding dress",
],
[
"./examples/6.jpg",
"./examples/pose/pose4.jpeg",
"ZangZu",
"",
],
[
"./examples/7.jpeg",
"./examples/pose/pose3.png",
"ZangZu",
"",
],
]
return case
def convert_from_cv2_to_image(img: np.ndarray) -> Image:
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]):
stickwidth = 4
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
kps = np.array(kps)
w, h = image_pil.size
out_img = np.zeros([h, w, 3])
for i in range(len(limbSeq)):
index = limbSeq[i]
color = color_list[index[0]]
x = kps[index][:, 0]
y = kps[index][:, 1]
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
out_img = (out_img * 0.6).astype(np.uint8)
for idx_kp, kp in enumerate(kps):
color = color_list[idx_kp]
x, y = kp
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
out_img_pil = PIL.Image.fromarray(out_img.astype(np.uint8))
return out_img_pil
def resize_img(input_image,max_side=1280,min_side=1024,size=None,pad_to_max_side=False,mode=PIL.Image.BILINEAR,base_pixel_number=64,):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio * w), round(ratio * h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[
offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new
] = np.array(input_image)
input_image = Image.fromarray(res)
return input_image
def apply_style(style_params, positive: str, negative: str = ""):
p = style_params["prompt"].replace("{prompt}", positive)
n = style_params["negative_prompt"] + ' ' + negative
return p, n
def run_for_examples(face_file, pose_file, style, prompt, negative_prompt="", ):
return generate_image(
face_file,
pose_file,
style,
prompt,
negative_prompt,
20, # num_steps
0.9, # ControlNet strength
0.8, # Adapter strength
5.0, # guidance_scale
42, # seed
1280, # max side
)
@spaces.GPU
def generate_image(
face_image_path,
pose_image_path,
style_name,
prompt,
negative_prompt,
num_steps,
controlnet_conditioning_scale,
adapter_strength_ratio,
guidance_scale,
seed,
max_side,
progress=gr.Progress(track_tqdm=True),
):
if face_image_path is None:
raise gr.Error(f"Cannot find any input face image! Please upload the face image")
face_image = load_image(face_image_path)
face_image = resize_img(face_image, max_side=max_side)
# face_image = resize_img(face_image)
face_image_cv2 = convert_from_image_to_cv2(face_image)
height, width, _ = face_image_cv2.shape
# Extract face features
face_info = app.get(face_image_cv2)
if len(face_info) == 0:
raise gr.Error(f"Unable to detect a face in the image. Please upload a different photo with a clear face.")
face_info = sorted(
face_info,
key=lambda x: (x["bbox"][2] - x["bbox"][0]) * x["bbox"][3] - x["bbox"][1],
)[-1] # only use the maximum face
face_emb = torch.from_numpy(face_info.normed_embedding)
face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"])
style_params = style_lib[style_name][face_info["gender"]]
if prompt is None:
prompt = "a person"
prompt, negative_prompt = apply_style(style_params, prompt, negative_prompt)
if pose_image_path is not None:
pose_image = load_image(pose_image_path)
pose_image = resize_img(pose_image, max_side=max_side)
# pose_image = resize_img(pose_image)
pose_image_cv2 = convert_from_image_to_cv2(pose_image)
face_info = app.get(pose_image_cv2)
if len(face_info) == 0:
raise gr.Error(f"Cannot find any face in the reference image! Please upload another person image")
face_info = face_info[-1]
face_kps = draw_kps(pose_image, face_info["kps"])
width, height = face_kps.size
print(width, height)
print("Start inference...")
print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}")
# pipe.set_ip_adapter_scale(adapter_strength_ratio)
images = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=face_kps,
face_emb=face_emb,
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
ip_adapter_scale=float(adapter_strength_ratio),
num_inference_steps=num_steps,
guidance_scale=float(guidance_scale),
height=height,
width=width,
generator=torch.Generator(device=device).manual_seed(seed),
).images
return images[0], gr.update(visible=True)
title = r"""
<h1 align="center">InstantID-XS</h1>
"""
tips = r"""
### Usage tips of InstantID-XS
1. If you're not satisfied with the similarity, try increasing the weight of "ControlNet strength" and "Adapter Strength."
2. If you feel that the similarity is not high, you can increase the adapter strength appropriately.
3. If you want to achieve a pose image as similar as possible, please increase the ControlNet strength appropriately.
"""
css = """
.gradio-container {width: 85% !important}
"""
with gr.Blocks(css=css) as demo:
# description
gr.Markdown(title)
# gr.Markdown(description)
with gr.Row():
with gr.Column():
with gr.Row(equal_height=True):
# upload face image
face_file = gr.Image(label="Upload a photo of your face", type="filepath")
# optional: upload a reference pose image
pose_file = gr.Image(label="Upload a reference pose image (Optional)",type="filepath",)
# prompt
prompt = gr.Textbox(
label="Prompt",
info="Give simple prompt is enough to achieve good face fidelity",
placeholder="A photo of a person",
value="realistic, symmetrical hyperdetailed texture, masterpiece, enhanced details, perfect composition, authentic, natural posture",
)
submit = gr.Button("Submit", variant="primary")
style = gr.Dropdown(
label="Style",
info="If you want to generate images completely according to your own prompt, please choose '(No style)'",
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME
)
# strength
controlnet_conditioning_scale = gr.Slider(
label="ControlNet strength (for pose)",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.9,
)
adapter_strength_ratio = gr.Slider(
label="Adapter strength (for fidelity)",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.8,
)
with gr.Accordion(open=True, label="Advanced Options"):
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="low quality",
value="(lowres, low quality, worst quality:1.2), (text:1.2), nude, nsfw, watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
)
num_steps = gr.Slider(
label="Number of sample steps",
minimum=1,
maximum=100,
step=1,
value=20,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.1,
maximum=10.0,
step=0.1,
value=5.0,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
max_side = gr.Slider(
label="Max side",
minimum=512,
maximum=2048,
step=64,
value=1280,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Column(scale=1):
gallery = gr.Image(label="Generated Images")
usage_tips = gr.Markdown(label="InstantID Usage Tips", value=tips, visible=False)
submit.click(
fn=remove_tips,
outputs=usage_tips,
).then(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate_image,
inputs=[
face_file,
pose_file,
style,
prompt,
negative_prompt,
num_steps,
controlnet_conditioning_scale,
adapter_strength_ratio,
guidance_scale,
seed,
max_side,
],
outputs=[gallery, usage_tips],
)
gr.Examples(
examples=get_example(),
inputs=[face_file, pose_file, style, prompt],
fn=run_for_examples,
outputs=[gallery, usage_tips],
cache_examples=True,
)
# gr.Markdown(article)
demo.queue(api_open=False)
demo.launch() |