Spaces:
Running
on
Zero
Running
on
Zero
XuDongZhou
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,154 +1,402 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
import random
|
|
|
4 |
|
5 |
-
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
-
import torch
|
8 |
|
9 |
-
|
10 |
-
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
else:
|
15 |
-
torch_dtype = torch.float32
|
16 |
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
26 |
prompt,
|
27 |
negative_prompt,
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
height,
|
32 |
guidance_scale,
|
33 |
-
|
34 |
progress=gr.Progress(track_tqdm=True),
|
35 |
):
|
36 |
-
if randomize_seed:
|
37 |
-
seed = random.randint(0, MAX_SEED)
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
prompt=prompt,
|
43 |
negative_prompt=negative_prompt,
|
|
|
|
|
|
|
|
|
|
|
44 |
guidance_scale=guidance_scale,
|
45 |
-
num_inference_steps=num_inference_steps,
|
46 |
-
width=width,
|
47 |
height=height,
|
48 |
-
|
49 |
-
|
|
|
50 |
|
51 |
-
return
|
52 |
|
53 |
|
54 |
-
examples = [
|
55 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
56 |
-
"An astronaut riding a green horse",
|
57 |
-
"A delicious ceviche cheesecake slice",
|
58 |
-
]
|
59 |
|
60 |
css = """
|
61 |
-
|
62 |
-
margin: 0 auto;
|
63 |
-
max-width: 640px;
|
64 |
-
}
|
65 |
"""
|
66 |
-
|
67 |
with gr.Blocks(css=css) as demo:
|
68 |
-
|
69 |
-
|
|
|
70 |
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
label="Prompt",
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
container=False,
|
78 |
)
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
with gr.Accordion("Advanced Settings", open=False):
|
85 |
-
negative_prompt = gr.Text(
|
86 |
-
label="Negative prompt",
|
87 |
-
max_lines=1,
|
88 |
-
placeholder="Enter a negative prompt",
|
89 |
-
visible=False,
|
90 |
)
|
91 |
|
92 |
-
|
93 |
-
|
|
|
94 |
minimum=0,
|
95 |
-
maximum=
|
96 |
-
step=1,
|
97 |
-
value=0,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
)
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
minimum=256,
|
106 |
-
maximum=MAX_IMAGE_SIZE,
|
107 |
-
step=32,
|
108 |
-
value=1024, # Replace with defaults that work for your model
|
109 |
)
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
value=1024, # Replace with defaults that work for your model
|
117 |
)
|
118 |
-
|
119 |
-
with gr.Row():
|
120 |
guidance_scale = gr.Slider(
|
121 |
label="Guidance scale",
|
122 |
-
minimum=0.
|
123 |
maximum=10.0,
|
124 |
step=0.1,
|
125 |
-
value=
|
126 |
)
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
maximum=50,
|
132 |
step=1,
|
133 |
-
value=
|
134 |
)
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
)
|
152 |
|
153 |
-
|
154 |
-
|
|
|
|
|
|
1 |
+
import cv2, os
|
2 |
+
import torch
|
3 |
import random
|
4 |
+
import numpy as np
|
5 |
|
6 |
+
import spaces
|
|
|
|
|
7 |
|
8 |
+
import PIL
|
9 |
+
from PIL import Image
|
10 |
+
from typing import Tuple
|
11 |
|
12 |
+
import diffusers
|
13 |
+
from diffusers.utils import load_image
|
|
|
|
|
14 |
|
15 |
+
from diffusers import (
|
16 |
+
AutoencoderKL,
|
17 |
+
UNet2DConditionModel,
|
18 |
+
UniPCMultistepScheduler,
|
19 |
+
)
|
20 |
|
21 |
+
from huggingface_hub import hf_hub_download
|
22 |
+
|
23 |
+
from insightface.app import FaceAnalysis
|
24 |
+
|
25 |
+
from pipeline_controlnet_xs_sd_xl_instantid import StableDiffusionXLInstantIDXSPipeline, UNetControlNetXSModel
|
26 |
+
|
27 |
+
from utils.controlnet_xs import ControlNetXSAdapter
|
28 |
+
# from controlnet_aux import OpenposeDetector
|
29 |
+
|
30 |
+
import gradio as gr
|
31 |
+
|
32 |
+
import torch.nn.functional as F
|
33 |
+
from torchvision.transforms import Compose
|
34 |
+
|
35 |
+
# global variable
|
36 |
MAX_SEED = np.iinfo(np.int32).max
|
37 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
38 |
+
weight_dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
|
39 |
+
|
40 |
+
|
41 |
+
base_model = 'frankjoshua/realvisxlV40_v40Bakedvae'
|
42 |
+
vae_path = 'madebyollin/sdxl-vae-fp16-fix'
|
43 |
+
ckpt = 'RED-AIGC/InstantID-XS'
|
44 |
+
|
45 |
+
image_proj_path = os.path.join(ckpt, "image_proj.bin")
|
46 |
+
cnxs_path = os.path.join(ckpt, "controlnetxs.bin")
|
47 |
+
cross_attn_path = os.path.join(ckpt, "cross_attn.bin")
|
48 |
+
|
49 |
+
|
50 |
+
# Load face encoder
|
51 |
+
app = FaceAnalysis(
|
52 |
+
name="antelopev2",
|
53 |
+
root="./",
|
54 |
+
providers=["CPUExecutionProvider"],
|
55 |
+
)
|
56 |
+
app.prepare(ctx_id=0, det_size=(640, 640))
|
57 |
+
|
58 |
+
|
59 |
+
def get_ControlNetXS(base_model, cnxs_path, device, size_ratio=0.125, weight_dtype=torch.float16):
|
60 |
+
unet = UNet2DConditionModel.from_pretrained(base_model, subfolder="unet").to(device, dtype=weight_dtype)
|
61 |
+
controlnet = ControlNetXSAdapter.from_unet(unet, size_ratio=size_ratio, learn_time_embedding=True)
|
62 |
+
state_dict = torch.load(cnxs_path, map_location="cpu", weights_only=True)
|
63 |
+
ctrl_state_dict = {}
|
64 |
+
for key, value in state_dict.items():
|
65 |
+
if 'attn2.processor' not in key:
|
66 |
+
if 'ctrl_' in key and 'ctrl_to_base' not in key:
|
67 |
+
key = key.replace('ctrl_', '')
|
68 |
+
if 'up_blocks' in key:
|
69 |
+
key = key.replace('up_blocks', 'up_connections')
|
70 |
+
ctrl_state_dict[key] = value
|
71 |
+
controlnet.load_state_dict(ctrl_state_dict, strict=True)
|
72 |
+
controlnet.to(device, dtype=weight_dtype)
|
73 |
+
ControlNetXS = UNetControlNetXSModel.from_unet(unet, controlnet).to(device, dtype=weight_dtype)
|
74 |
+
|
75 |
+
return ControlNetXS
|
76 |
+
|
77 |
+
ControlNetXS = get_ControlNetXS(base_model, cnxs_path, device, size_ratio=0.125, weight_dtype=weight_dtype)
|
78 |
+
vae = AutoencoderKL.from_pretrained(vae_path)
|
79 |
+
pipe = StableDiffusionXLInstantIDXSPipeline.from_pretrained(
|
80 |
+
pretrained_model_name_or_path,
|
81 |
+
vae=vae,
|
82 |
+
unet=ControlNetXS,
|
83 |
+
controlnet=None,
|
84 |
+
torch_dtype=weight_dtype,
|
85 |
+
)
|
86 |
+
|
87 |
+
pipe.cuda(device=device, dtype=weight_dtype, use_xformers=True)
|
88 |
+
pipe.load_ip_adapter(image_proj_path, cross_attn_path)
|
89 |
+
|
90 |
+
pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
91 |
+
pipe.unet.config.ctrl_learn_time_embedding = True
|
92 |
+
pipe = pipe.to(args.device)
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
def toggle_lcm_ui(value):
|
98 |
+
if value:
|
99 |
+
return (
|
100 |
+
gr.update(minimum=0, maximum=100, step=1, value=5),
|
101 |
+
gr.update(minimum=0.1, maximum=20.0, step=0.1, value=1.5),
|
102 |
+
)
|
103 |
+
else:
|
104 |
+
return (
|
105 |
+
gr.update(minimum=5, maximum=100, step=1, value=30),
|
106 |
+
gr.update(minimum=0.1, maximum=20.0, step=0.1, value=5),
|
107 |
+
)
|
108 |
+
|
109 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
110 |
+
if randomize_seed:
|
111 |
+
seed = random.randint(0, MAX_SEED)
|
112 |
+
return seed
|
113 |
+
|
114 |
+
def remove_tips():
|
115 |
+
return gr.update(visible=False)
|
116 |
+
|
117 |
+
def get_example():
|
118 |
+
case = [
|
119 |
+
[
|
120 |
+
"./examples/1.jpg",
|
121 |
+
None,
|
122 |
+
"a woman,(looking at the viewer), portrait, daily wear, 8K texture, realistic, symmetrical hyperdetailed texture, masterpiece, enhanced details, (eye highlight:2), perfect composition, natural lighting, best quality, authentic, natural posture",
|
123 |
+
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
124 |
+
],
|
125 |
+
[
|
126 |
+
"./examples/1.jpeg",
|
127 |
+
"./examples/poses/pose1.jpg",
|
128 |
+
"a woman,(looking at the viewer), portrait, daily wear, 8K texture, realistic, symmetrical hyperdetailed texture, masterpiece, enhanced details, (eye highlight:2), perfect composition, natural lighting, best quality, authentic, natural posture",
|
129 |
+
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
130 |
+
],
|
131 |
+
|
132 |
+
return case
|
133 |
+
|
134 |
+
def run_for_examples(face_file, pose_file, prompt, style, negative_prompt):
|
135 |
+
return generate_image(
|
136 |
+
face_file,
|
137 |
+
pose_file,
|
138 |
+
prompt,
|
139 |
+
negative_prompt,
|
140 |
+
20, # num_steps
|
141 |
+
0.8, # identitynet_strength_ratio
|
142 |
+
0.8, # adapter_strength_ratio
|
143 |
+
0.8, # pose_strength
|
144 |
+
5.0, # guidance_scale
|
145 |
+
42, # seed
|
146 |
+
)
|
147 |
+
|
148 |
+
def convert_from_cv2_to_image(img: np.ndarray) -> Image:
|
149 |
+
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
150 |
+
|
151 |
+
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
|
152 |
+
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
153 |
+
|
154 |
+
def resize_img(
|
155 |
+
input_image,
|
156 |
+
max_side=1280,
|
157 |
+
min_side=1024,
|
158 |
+
size=None,
|
159 |
+
pad_to_max_side=False,
|
160 |
+
mode=PIL.Image.BILINEAR,
|
161 |
+
base_pixel_number=64,
|
162 |
+
):
|
163 |
+
w, h = input_image.size
|
164 |
+
if size is not None:
|
165 |
+
w_resize_new, h_resize_new = size
|
166 |
+
else:
|
167 |
+
ratio = min_side / min(h, w)
|
168 |
+
w, h = round(ratio * w), round(ratio * h)
|
169 |
+
ratio = max_side / max(h, w)
|
170 |
+
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
|
171 |
+
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
|
172 |
+
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
|
173 |
+
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
|
174 |
|
175 |
+
if pad_to_max_side:
|
176 |
+
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
|
177 |
+
offset_x = (max_side - w_resize_new) // 2
|
178 |
+
offset_y = (max_side - h_resize_new) // 2
|
179 |
+
res[
|
180 |
+
offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new
|
181 |
+
] = np.array(input_image)
|
182 |
+
input_image = Image.fromarray(res)
|
183 |
+
return input_image
|
184 |
|
185 |
+
|
186 |
+
@spaces.GPU
|
187 |
+
def generate_image(
|
188 |
+
face_image_path,
|
189 |
+
pose_image_path,
|
190 |
prompt,
|
191 |
negative_prompt,
|
192 |
+
num_steps,
|
193 |
+
controlnet_conditioning_scale,
|
194 |
+
adapter_strength_ratio,
|
|
|
195 |
guidance_scale,
|
196 |
+
seed,
|
197 |
progress=gr.Progress(track_tqdm=True),
|
198 |
):
|
|
|
|
|
199 |
|
200 |
+
if face_image_path is None:
|
201 |
+
raise gr.Error(
|
202 |
+
f"Cannot find any input face image! Please upload the face image"
|
203 |
+
)
|
204 |
+
|
205 |
+
if prompt is None:
|
206 |
+
prompt = "a person"
|
207 |
+
|
208 |
+
# apply the style template
|
209 |
+
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
|
210 |
+
|
211 |
+
face_image = load_image(face_image_path)
|
212 |
+
face_image = resize_img(face_image, max_side=1024)
|
213 |
+
face_image_cv2 = convert_from_image_to_cv2(face_image)
|
214 |
+
height, width, _ = face_image_cv2.shape
|
215 |
+
|
216 |
+
# Extract face features
|
217 |
+
face_info = app.get(face_image_cv2)
|
218 |
+
|
219 |
+
if len(face_info) == 0:
|
220 |
+
raise gr.Error(
|
221 |
+
f"Unable to detect a face in the image. Please upload a different photo with a clear face."
|
222 |
+
)
|
223 |
+
|
224 |
+
face_info = sorted(
|
225 |
+
face_info,
|
226 |
+
key=lambda x: (x["bbox"][2] - x["bbox"][0]) * x["bbox"][3] - x["bbox"][1],
|
227 |
+
)[-1] # only use the maximum face
|
228 |
|
229 |
+
face_emb = torch.from_numpy(face_info.normed_embedding)
|
230 |
+
face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"])
|
231 |
+
img_controlnet = face_image
|
232 |
+
if pose_image_path is not None:
|
233 |
+
pose_image = load_image(pose_image_path)
|
234 |
+
pose_image = resize_img(pose_image, max_side=1024)
|
235 |
+
img_controlnet = pose_image
|
236 |
+
pose_image_cv2 = convert_from_image_to_cv2(pose_image)
|
237 |
+
|
238 |
+
face_info = app.get(pose_image_cv2)
|
239 |
+
|
240 |
+
if len(face_info) == 0:
|
241 |
+
raise gr.Error(
|
242 |
+
f"Cannot find any face in the reference image! Please upload another person image"
|
243 |
+
)
|
244 |
+
|
245 |
+
face_info = face_info[-1]
|
246 |
+
face_kps = draw_kps(pose_image, face_info["kps"])
|
247 |
+
|
248 |
+
width, height = face_kps.size
|
249 |
+
|
250 |
+
print("Start inference...")
|
251 |
+
print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}")
|
252 |
+
|
253 |
+
pipe.set_ip_adapter_scale(adapter_strength_ratio)
|
254 |
+
images = pipe(
|
255 |
prompt=prompt,
|
256 |
negative_prompt=negative_prompt,
|
257 |
+
image_embeds=face_emb,
|
258 |
+
image=face_kps,
|
259 |
+
control_mask=control_mask,
|
260 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
261 |
+
num_inference_steps=num_steps,
|
262 |
guidance_scale=guidance_scale,
|
|
|
|
|
263 |
height=height,
|
264 |
+
width=width,
|
265 |
+
generator=torch.Generator(device=device).manual_seed(seed),
|
266 |
+
).images
|
267 |
|
268 |
+
return images[0], gr.update(visible=True)
|
269 |
|
270 |
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
css = """
|
273 |
+
.gradio-container {width: 85% !important}
|
|
|
|
|
|
|
274 |
"""
|
|
|
275 |
with gr.Blocks(css=css) as demo:
|
276 |
+
# description
|
277 |
+
gr.Markdown(title)
|
278 |
+
gr.Markdown(description)
|
279 |
|
280 |
+
with gr.Row():
|
281 |
+
with gr.Column():
|
282 |
+
with gr.Row(equal_height=True):
|
283 |
+
# upload face image
|
284 |
+
face_file = gr.Image(
|
285 |
+
label="Upload a photo of your face", type="filepath"
|
286 |
+
)
|
287 |
+
# optional: upload a reference pose image
|
288 |
+
pose_file = gr.Image(
|
289 |
+
label="Upload a reference pose image (Optional)",
|
290 |
+
type="filepath",
|
291 |
+
)
|
292 |
+
|
293 |
+
# prompt
|
294 |
+
prompt = gr.Textbox(
|
295 |
label="Prompt",
|
296 |
+
info="Give simple prompt is enough to achieve good face fidelity",
|
297 |
+
placeholder="A photo of a person",
|
298 |
+
value="",
|
|
|
299 |
)
|
300 |
|
301 |
+
submit = gr.Button("Submit", variant="primary")
|
302 |
+
enable_LCM = gr.Checkbox(
|
303 |
+
label="Enable Fast Inference with LCM", value=enable_lcm_arg,
|
304 |
+
info="LCM speeds up the inference step, the trade-off is the quality of the generated image. It performs better with portrait face images rather than distant faces",
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
)
|
306 |
|
307 |
+
# strength
|
308 |
+
controlnet_conditioning_scale = gr.Slider(
|
309 |
+
label="IdentityNet strength (for fidelity)",
|
310 |
minimum=0,
|
311 |
+
maximum=1.0,
|
312 |
+
step=0.1,
|
313 |
+
value=0.8,
|
314 |
+
)
|
315 |
+
adapter_strength_ratio = gr.Slider(
|
316 |
+
label="Image adapter strength (for detail)",
|
317 |
+
minimum=0,
|
318 |
+
maximum=1.2,
|
319 |
+
step=0.1,
|
320 |
+
value=0.8,
|
321 |
)
|
322 |
|
323 |
+
with gr.Accordion(open=False, label="Advanced Options"):
|
324 |
+
negative_prompt = gr.Textbox(
|
325 |
+
label="Negative Prompt",
|
326 |
+
placeholder="low quality",
|
327 |
+
value="(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
|
|
|
|
|
|
|
|
|
328 |
)
|
329 |
+
num_steps = gr.Slider(
|
330 |
+
label="Number of sample steps",
|
331 |
+
minimum=1,
|
332 |
+
maximum=100,
|
333 |
+
step=1,
|
334 |
+
value=20,
|
|
|
335 |
)
|
|
|
|
|
336 |
guidance_scale = gr.Slider(
|
337 |
label="Guidance scale",
|
338 |
+
minimum=0.1,
|
339 |
maximum=10.0,
|
340 |
step=0.1,
|
341 |
+
value=5.0,
|
342 |
)
|
343 |
+
seed = gr.Slider(
|
344 |
+
label="Seed",
|
345 |
+
minimum=0,
|
346 |
+
maximum=MAX_SEED,
|
|
|
347 |
step=1,
|
348 |
+
value=42,
|
349 |
)
|
350 |
|
351 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
352 |
+
|
353 |
+
with gr.Column(scale=1):
|
354 |
+
gallery = gr.Image(label="Generated Images")
|
355 |
+
usage_tips = gr.Markdown(
|
356 |
+
label="InstantID Usage Tips", value=tips, visible=False
|
357 |
+
)
|
358 |
+
|
359 |
+
submit.click(
|
360 |
+
fn=remove_tips,
|
361 |
+
outputs=usage_tips,
|
362 |
+
).then(
|
363 |
+
fn=randomize_seed_fn,
|
364 |
+
inputs=[seed, randomize_seed],
|
365 |
+
outputs=seed,
|
366 |
+
queue=False,
|
367 |
+
api_name=False,
|
368 |
+
).then(
|
369 |
+
fn=generate_image,
|
370 |
+
inputs=[
|
371 |
+
face_file,
|
372 |
+
pose_file,
|
373 |
+
prompt,
|
374 |
+
negative_prompt,
|
375 |
+
num_steps,
|
376 |
+
controlnet_conditioning_scale,
|
377 |
+
adapter_strength_ratio,
|
378 |
+
guidance_scale,
|
379 |
+
seed,
|
380 |
+
],
|
381 |
+
outputs=[gallery, usage_tips],
|
382 |
+
)
|
383 |
+
|
384 |
+
enable_LCM.input(
|
385 |
+
fn=toggle_lcm_ui,
|
386 |
+
inputs=[enable_LCM],
|
387 |
+
outputs=[num_steps, guidance_scale],
|
388 |
+
queue=False,
|
389 |
+
)
|
390 |
+
|
391 |
+
gr.Examples(
|
392 |
+
examples=get_example(),
|
393 |
+
inputs=[face_file, pose_file, prompt, negative_prompt],
|
394 |
+
fn=run_for_examples,
|
395 |
+
outputs=[gallery, usage_tips],
|
396 |
+
cache_examples=True,
|
397 |
)
|
398 |
|
399 |
+
gr.Markdown(article)
|
400 |
+
|
401 |
+
demo.queue(api_open=False)
|
402 |
+
demo.launch()
|