Spaces:
Running
Running
import streamlit as st | |
st.set_page_config(layout="wide") | |
for name in dir(): | |
if not name.startswith('_'): | |
del globals()[name] | |
import pulp | |
import numpy as np | |
import pandas as pd | |
import streamlit as st | |
import gspread | |
import pymongo | |
from itertools import combinations | |
def init_conn(): | |
uri = st.secrets['mongo_uri'] | |
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000) | |
db = client["NHL_Database"] | |
return db | |
db = init_conn() | |
player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}', | |
'4x%': '{:.2%}'} | |
st.markdown(""" | |
<style> | |
/* Tab styling */ | |
.stTabs [data-baseweb="tab-list"] { | |
gap: 8px; | |
padding: 4px; | |
} | |
.stTabs [data-baseweb="tab"] { | |
height: 50px; | |
white-space: pre-wrap; | |
background-color: #DAA520; | |
color: white; | |
border-radius: 10px; | |
gap: 1px; | |
padding: 10px 20px; | |
font-weight: bold; | |
transition: all 0.3s ease; | |
} | |
.stTabs [aria-selected="true"] { | |
background-color: #DAA520; | |
border: 3px solid #FFD700; | |
color: white; | |
} | |
.stTabs [data-baseweb="tab"]:hover { | |
background-color: #FFD700; | |
cursor: pointer; | |
} | |
</style>""", unsafe_allow_html=True) | |
def player_stat_table(): | |
collection = db["Player_Level_ROO"] | |
cursor = collection.find() | |
player_frame = pd.DataFrame(cursor) | |
player_frame = player_frame[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', | |
'Small Field Own%', 'Large Field Own%', 'Cash Own%', 'CPT_Own', 'Site', 'Type', 'Slate', 'player_id', 'timestamp']] | |
collection = db["Player_Lines_ROO"] | |
cursor = collection.find() | |
line_frame = pd.DataFrame(cursor) | |
line_frame = line_frame[['Player', 'SK1', 'SK2', 'SK3', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '50+%', '2x%', '3x%', '4x%', 'Own', 'Site', 'Type', 'Slate']] | |
collection = db["Player_Powerplay_ROO"] | |
cursor = collection.find() | |
pp_frame = pd.DataFrame(cursor) | |
pp_frame = pp_frame[['Player', 'SK1', 'SK2', 'SK3', 'SK4', 'SK5', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '75+%', '2x%', '3x%', '4x%', 'Own', 'Site', 'Type', 'Slate']] | |
timestamp = player_frame['timestamp'].values[0] | |
return player_frame, line_frame, pp_frame, timestamp | |
def convert_df_to_csv(df): | |
return df.to_csv().encode('utf-8') | |
player_frame, line_frame, pp_frame, timestamp = player_stat_table() | |
t_stamp = f"Last Update: " + str(timestamp) + f" CST" | |
view_var1 = st.radio("View Type", ("Simple", "Advanced"), key='view_var1') | |
tab1, tab2, tab3 = st.tabs(["Player Range of Outcomes", "Line Combo Range of Outcomes", "Power Play Range of Outcomes"]) | |
with tab1: | |
with st.expander("Info and Filters"): | |
with st.container(): | |
st.info("Advanced view includes all stats and thresholds, simple includes just basic columns for ease of use on mobile") | |
st.info(t_stamp) | |
if st.button("Load/Reset Data", key='reset1'): | |
st.cache_data.clear() | |
player_frame, line_frame, pp_frame, timestamp = player_stat_table() | |
t_stamp = f"Last Update: " + str(timestamp) + f" CST" | |
site_var1 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var1') | |
main_var1 = st.radio("Main slate or secondary slate?", ('Main Slate', 'Secondary Slate'), key='main_var1') | |
split_var1 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var1') | |
if split_var1 == 'Specific Games': | |
team_var1 = st.multiselect('Which teams would you like to include in the ROO?', options = player_frame['Team'].unique(), key='team_var1') | |
elif split_var1 == 'Full Slate Run': | |
team_var1 = player_frame.Team.values.tolist() | |
pos_split1 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split1') | |
if pos_split1 == 'Specific Positions': | |
pos_var1 = st.multiselect('What Positions would you like to view?', options = ['C', 'W', 'D', 'G']) | |
elif pos_split1 == 'All Positions': | |
pos_var1 = 'All' | |
sal_var1 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 20000), key='sal_var1') | |
final_Proj = player_frame[player_frame['Site'] == str(site_var1)] | |
final_Proj = final_Proj[final_Proj['Type'] == 'Basic'] | |
final_Proj = final_Proj[final_Proj['Slate'] == main_var1] | |
final_Proj = final_Proj[player_frame['Team'].isin(team_var1)] | |
final_Proj = final_Proj[final_Proj['Salary'] >= sal_var1[0]] | |
final_Proj = final_Proj[final_Proj['Salary'] <= sal_var1[1]] | |
if pos_var1 != 'All': | |
final_Proj = final_Proj[final_Proj['Position'].str.contains('|'.join(pos_var1))] | |
final_Proj = final_Proj.sort_values(by='Median', ascending=False) | |
if pos_var1 == 'All': | |
final_Proj = final_Proj.sort_values(by='Median', ascending=False) | |
if view_var1 == 'Advanced': | |
display_proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', | |
'Own', 'Small Field Own%', 'Large Field Own%', 'Cash Own%', 'CPT_Own']] | |
elif view_var1 == 'Simple': | |
display_proj = final_Proj[['Player', 'Position', 'Salary', 'Median', '3x%', 'Own']] | |
st.dataframe(display_proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True, hide_index=True) | |
st.download_button( | |
label="Export Tables", | |
data=convert_df_to_csv(display_proj), | |
file_name='NHL_player_export.csv', | |
mime='text/csv', | |
) | |
with tab2: | |
with st.expander("Info and Filters"): | |
with st.container(): | |
st.info("Advanced view includes all stats and thresholds, simple includes just basic columns for ease of use on mobile") | |
st.info(t_stamp) | |
if st.button("Load/Reset Data", key='reset2'): | |
st.cache_data.clear() | |
player_frame, line_frame, pp_frame, timestamp = player_stat_table() | |
t_stamp = f"Last Update: " + str(timestamp) + f" CST" | |
site_var2 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var2') | |
main_var2 = st.radio("Main slate or secondary slate?", ('Main Slate', 'Secondary Slate'), key='main_var2') | |
sal_var2 = st.slider("Is there a certain price range you want to view?", 5000, 40000, (5000, 40000), key='sal_var2') | |
final_line_combos = line_frame[line_frame['Site'] == str(site_var2)] | |
final_line_combos = final_line_combos[final_line_combos['Type'] == 'Basic'] | |
final_line_combos = final_line_combos[final_line_combos['Slate'] == main_var2] | |
final_line_combos = final_line_combos[final_line_combos['Salary'] >= sal_var2[0]] | |
final_line_combos = final_line_combos[final_line_combos['Salary'] <= sal_var2[1]] | |
final_line_combos = final_line_combos.drop_duplicates(subset=['Player']) | |
final_line_combos = final_line_combos.sort_values(by='Median', ascending=False) | |
if view_var1 == 'Advanced': | |
display_proj_lines = final_line_combos[['Player', 'SK1', 'SK2', 'SK3', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '50+%', '2x%', '3x%', '4x%', | |
'Own']] | |
elif view_var1 == 'Simple': | |
display_proj_lines = final_line_combos[['SK1', 'SK2', 'SK3', 'Salary', 'Median', '3x%', 'Own']] | |
st.dataframe(display_proj_lines.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True, hide_index=True) | |
st.download_button( | |
label="Export Tables", | |
data=convert_df_to_csv(display_proj_lines), | |
file_name='NHL_linecombos_export.csv', | |
mime='text/csv', | |
) | |
with tab3: | |
with st.expander("Info and Filters"): | |
with st.container(): | |
st.info("Advanced view includes all stats and thresholds, simple includes just basic columns for ease of use on mobile") | |
st.info(t_stamp) | |
if st.button("Load/Reset Data", key='reset3'): | |
st.cache_data.clear() | |
player_frame, line_frame, pp_frame, timestamp = player_stat_table() | |
t_stamp = f"Last Update: " + str(timestamp) + f" CST" | |
site_var3 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var3') | |
main_var3 = st.radio("Main slate or secondary slate?", ('Main Slate', 'Secondary Slate'), key='main_var3') | |
sal_var3 = st.slider("Is there a certain price range you want to view?", 5000, 40000, (5000, 40000), key='sal_var3') | |
final_pp_combos = pp_frame[pp_frame['Site'] == str(site_var3)] | |
final_pp_combos = final_pp_combos[final_pp_combos['Type'] == 'Basic'] | |
final_pp_combos = final_pp_combos[final_pp_combos['Slate'] == main_var3] | |
final_pp_combos = final_pp_combos[final_pp_combos['Salary'] >= sal_var3[0]] | |
final_pp_combos = final_pp_combos[final_pp_combos['Salary'] <= sal_var3[1]] | |
final_pp_combos = final_pp_combos.drop_duplicates(subset=['Player']) | |
final_pp_combos = final_pp_combos.sort_values(by='Median', ascending=False) | |
if view_var1 == 'Advanced': | |
display_proj_pp = final_pp_combos[['Player', 'SK1', 'SK2', 'SK3', 'SK4', 'SK5', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '75+%', '2x%', '3x%', '4x%', | |
'Own']] | |
elif view_var1 == 'Simple': | |
display_proj_pp = final_pp_combos[['SK1', 'SK2', 'SK3', 'SK4', 'SK5', 'Salary', 'Median', '3x%', 'Own']] | |
st.dataframe(display_proj_pp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True, hide_index=True) | |
st.download_button( | |
label="Export Tables", | |
data=convert_df_to_csv(display_proj_pp), | |
file_name='NHL_powerplay_export.csv', | |
mime='text/csv', | |
) |