File size: 73,823 Bytes
6046583
 
 
 
 
 
 
 
 
 
 
 
97fb8ce
6046583
3ea3a9c
6046583
 
 
755d752
 
 
6046583
755d752
97fb8ce
755d752
6046583
 
cc94f0d
6046583
3a2a6cd
3ea3a9c
3a2a6cd
3ea3a9c
 
 
 
407963c
 
 
 
 
 
 
 
 
 
 
78ac3ba
 
 
 
 
 
 
 
 
 
 
00f90b0
78ac3ba
 
 
 
 
 
 
 
 
 
6a2c013
78ac3ba
 
 
 
00f90b0
78ac3ba
 
 
 
7936494
6046583
755d752
 
 
3b45c90
8e78c15
6046583
755d752
 
 
8e78c15
6046583
7499a50
755d752
 
8e78c15
755d752
 
6046583
11362fa
6046583
3ea3a9c
e3717e4
3ea3a9c
 
 
e3717e4
 
43dbf79
e3717e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43dbf79
e3717e4
 
 
 
3ea3a9c
e3717e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43dbf79
e3717e4
 
 
 
3ea3a9c
e3717e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ea3a9c
 
 
e3717e4
3ea3a9c
e3717e4
 
 
 
3ea3a9c
e3717e4
3ea3a9c
 
 
 
 
 
a965014
3ea3a9c
 
 
6d2710a
 
 
 
 
 
 
3ea3a9c
6d2710a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ea3a9c
6d2710a
 
 
 
 
 
 
 
 
 
 
3ea3a9c
6d2710a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ea3a9c
 
 
6d2710a
3ea3a9c
6d2710a
 
3ea3a9c
6d2710a
3ea3a9c
6d2710a
3ea3a9c
 
 
 
 
6046583
 
 
 
3ea3a9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11362fa
3ea3a9c
 
 
 
11362fa
6046583
407963c
 
 
 
 
 
3ea3a9c
 
 
 
 
 
 
 
 
407963c
a965014
3ea3a9c
 
 
 
39a239a
3ea3a9c
 
 
 
 
 
39a239a
e39c986
80de24e
80a26e5
 
 
 
 
 
 
 
 
 
 
 
 
78ac3ba
5236120
 
6046583
 
78ac3ba
 
3ea3a9c
 
 
 
407963c
a965014
78ac3ba
677e8ce
11362fa
 
 
 
 
 
 
71f0d1e
11362fa
 
71f0d1e
78ac3ba
3ea3a9c
78ac3ba
677e8ce
78ac3ba
 
 
39a239a
 
78ac3ba
 
 
 
 
5236120
aa45182
 
 
 
 
 
cad8660
aa45182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ea3a9c
3b45c90
5236120
3ea3a9c
5236120
43a41c7
78ac3ba
 
5236120
78ac3ba
 
 
6046583
80a26e5
78ac3ba
5236120
 
6046583
 
3ea3a9c
 
 
 
 
 
407963c
a965014
3ea3a9c
677e8ce
5bb8e91
78ac3ba
3ea3a9c
78ac3ba
677e8ce
78ac3ba
 
 
 
39a239a
 
5236120
3ea3a9c
5236120
 
3ea3a9c
5236120
43a41c7
78ac3ba
 
5236120
78ac3ba
 
 
6046583
80a26e5
78ac3ba
5236120
 
6046583
 
3ea3a9c
 
 
 
 
 
407963c
a965014
3ea3a9c
677e8ce
5bb8e91
6046583
3ea3a9c
78ac3ba
677e8ce
78ac3ba
 
 
 
39a239a
 
5236120
3ea3a9c
5236120
 
3ea3a9c
5236120
43a41c7
78ac3ba
 
5236120
78ac3ba
 
3ea3a9c
 
80a26e5
3ea3a9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
677e8ce
3ea3a9c
677e8ce
3ea3a9c
 
 
 
 
 
 
43dbf79
3ea3a9c
677e8ce
3ea3a9c
 
43dbf79
3ea3a9c
677e8ce
3ea3a9c
 
 
 
 
 
661abc1
 
3ea3a9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a2a6cd
3ea3a9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a2a6cd
3ea3a9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a2a6cd
3ea3a9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c02860c
3ea3a9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c02860c
3ea3a9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c02860c
3ea3a9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c02860c
3ea3a9c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
import streamlit as st
st.set_page_config(layout="wide")

for name in dir():
    if not name.startswith('_'):
        del globals()[name]

import pulp
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import pymongo
from itertools import combinations
import math

@st.cache_resource
def init_conn():
        uri = st.secrets['mongo_uri']
        client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
        db = client["NHL_Database"]

        return db
    
db = init_conn()

player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
                   '4x%': '{:.2%}'}

dk_columns = ['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
fd_columns = ['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
dk_hb_columns = ['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'FLEX']
fd_hb_columns = ['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G']
dk_sd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
fd_sd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']

showdown_selections = ['Showdown #1', 'Showdown #2', 'Showdown #3', 'Showdown #4', 'Showdown #5', 'Showdown #6', 'Showdown #7', 'Showdown #8', 'Showdown #9', 'Showdown #10', 'Showdown #11', 'Showdown #12', 'Showdown #13', 'Showdown #14', 'Showdown #15']
dk_db_showdown_selections = ['DK_NFL_SD_seed_frame_Showdown #1', 'DK_NFL_SD_seed_frame_Showdown #2', 'DK_NFL_SD_seed_frame_Showdown #3', 'DK_NFL_SD_seed_frame_Showdown #4', 'DK_NFL_SD_seed_frame_Showdown #5', 'DK_NFL_SD_seed_frame_Showdown #6',
'DK_NFL_SD_seed_frame_Showdown #7', 'DK_NFL_SD_seed_frame_Showdown #8', 'DK_NFL_SD_seed_frame_Showdown #9', 'DK_NFL_SD_seed_frame_Showdown #10', 'DK_NFL_SD_seed_frame_Showdown #11', 'DK_NFL_SD_seed_frame_Showdown #12', 'DK_NFL_SD_seed_frame_Showdown #13',
'DK_NFL_SD_seed_frame_Showdown #14', 'DK_NFL_SD_seed_frame_Showdown #15']
fd_db_showdown_selections = ['FD_NFL_SD_seed_frame_Showdown #1', 'FD_NFL_SD_seed_frame_Showdown #2', 'FD_NFL_SD_seed_frame_Showdown #3', 'FD_NFL_SD_seed_frame_Showdown #4', 'FD_NFL_SD_seed_frame_Showdown #5', 'FD_NFL_SD_seed_frame_Showdown #6',
'FD_NFL_SD_seed_frame_Showdown #7', 'FD_NFL_SD_seed_frame_Showdown #8', 'FD_NFL_SD_seed_frame_Showdown #9', 'FD_NFL_SD_seed_frame_Showdown #10', 'FD_NFL_SD_seed_frame_Showdown #11', 'FD_NFL_SD_seed_frame_Showdown #12', 'FD_NFL_SD_seed_frame_Showdown #13',
'FD_NFL_SD_seed_frame_Showdown #14', 'FD_NFL_SD_seed_frame_Showdown #15']

dk_showdown_db_translation = dict(zip(showdown_selections, dk_db_showdown_selections))
fd_showdown_db_translation = dict(zip(showdown_selections, fd_db_showdown_selections))

st.markdown("""
<style>
    /* Tab styling */
    .stTabs [data-baseweb="tab-list"] {
        gap: 8px;
        padding: 4px;
    }

    .stTabs [data-baseweb="tab"] {
        height: 50px;
        white-space: pre-wrap;
        background-color: #DAA520;
        color: white;
        border-radius: 10px;
        gap: 1px;
        padding: 10px 20px;
        font-weight: bold;
        transition: all 0.3s ease;
    }

    .stTabs [aria-selected="true"] {
        background-color: #DAA520;
        border: 3px solid #FFD700;
        color: white;
    }

    .stTabs [data-baseweb="tab"]:hover {
        background-color: #FFD700;
        cursor: pointer;
    }
</style>""", unsafe_allow_html=True)

@st.cache_resource(ttl=200)
def player_stat_table():
    collection = db["Player_Level_ROO"] 
    cursor = collection.find()
    player_frame = pd.DataFrame(cursor)
    player_frame = player_frame[['Player', 'Position', 'Line', 'PP Unit', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own',
                                 'Small Field Own%', 'Large Field Own%', 'Cash Own%', 'CPT_Own', 'Site', 'Type', 'Slate', 'player_id', 'timestamp']]

    collection = db["Player_Lines_ROO"] 
    cursor = collection.find()
    line_frame = pd.DataFrame(cursor)
    line_frame = line_frame[['Player', 'SK1', 'SK2', 'SK3', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '50+%', '2x%', '3x%', '4x%', 'Own', 'Site', 'Type', 'Slate']]

    collection = db["Player_Powerplay_ROO"] 
    cursor = collection.find()
    pp_frame = pd.DataFrame(cursor)
    pp_frame = pp_frame[['Player', 'SK1', 'SK2', 'SK3', 'SK4', 'SK5', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '75+%', '2x%', '3x%', '4x%', 'Own', 'Site', 'Type', 'Slate']]

    timestamp = player_frame['timestamp'].values[0]

    return player_frame, line_frame, pp_frame, timestamp

@st.cache_resource(ttl = 60)
def init_DK_lineups(type_var, slate_var, prio_var, prio_mix, db_translation, lineup_num, player_var2):  

    if prio_var == 'Mix':
        prio_var = None
    
    if type_var == 'Regular':
        if slate_var == 'Main Slate':
            collection = db['DK_NHL_name_map']
            cursor = collection.find()
            raw_data = pd.DataFrame(list(cursor))
            names_dict = dict(zip(raw_data['key'], raw_data['value']))

            collection = db['DK_NHL_seed_frame_Main Slate']
            if prio_var == None:
                if player_var2 != []:
                    player_columns = ['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'FLEX']
                    query_conditions = []
                    
                    for player in player_var2:
                        # Create a condition for each player to check if they appear in any column
                        player_condition = {'$or': [{col: player} for col in player_columns]}
                        query_conditions.append(player_condition)
                    
                    # Combine all player conditions with $or
                    if query_conditions:
                        filter_query = {'$or': query_conditions}
                        cursor1 = collection.find(filter_query).limit(math.ceil(lineup_num * (prio_mix / 100)))
                        cursor2 = collection.find(filter_query).sort('Own', -1).limit(math.ceil(lineup_num * ((100 - prio_mix) / 100)))
                    else:
                        cursor1 = collection.find().limit(math.ceil(lineup_num * (prio_mix / 100)))
                        cursor2 = collection.find().sort('Own', -1).limit(math.ceil(lineup_num * ((100 - prio_mix) / 100)))
                    raw_display = pd.concat([pd.DataFrame(list(cursor1)), pd.DataFrame(list(cursor2))])
                else:
                    cursor1 = collection.find().limit(math.ceil(lineup_num * (prio_mix / 100)))
                    cursor2 = collection.find().sort('Own', -1).limit(math.ceil(lineup_num * ((100 - prio_mix) / 100)))
                    raw_display = pd.concat([pd.DataFrame(list(cursor1)), pd.DataFrame(list(cursor2))])
            else:
                cursor = collection.find().sort(prio_var, -1).limit(lineup_num)
                raw_display = pd.DataFrame(list(cursor))
            
            raw_display = raw_display.drop_duplicates(subset=['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'FLEX'])

            raw_display = raw_display[['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
            dict_columns = ['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'FLEX']
            # Map names
            raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
        elif slate_var == 'Secondary Slate':
            collection = db['DK_NHL_Secondary_name_map']
            cursor = collection.find()
            raw_data = pd.DataFrame(list(cursor))
            names_dict = dict(zip(raw_data['key'], raw_data['value']))
            
            collection = db['DK_NHL_seed_frame_Secondary Slate']
            if prio_var == None:
                if player_var2 != []:
                    player_columns = ['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'FLEX']
                    query_conditions = []
                    
                    for player in player_var2:
                        # Create a condition for each player to check if they appear in any column
                        player_condition = {'$or': [{col: player} for col in player_columns]}
                        query_conditions.append(player_condition)
                    
                    # Combine all player conditions with $or
                    if query_conditions:
                        filter_query = {'$or': query_conditions}
                        cursor1 = collection.find(filter_query).limit(math.ceil(lineup_num * (prio_mix / 100)))
                        cursor2 = collection.find(filter_query).sort('Own', -1).limit(math.ceil(lineup_num * ((100 - prio_mix) / 100)))
                    else:
                        cursor1 = collection.find().limit(math.ceil(lineup_num * (prio_mix / 100)))
                        cursor2 = collection.find().sort('Own', -1).limit(math.ceil(lineup_num * ((100 - prio_mix) / 100)))
                    raw_display = pd.concat([pd.DataFrame(list(cursor1)), pd.DataFrame(list(cursor2))])
                else:
                    cursor1 = collection.find().limit(math.ceil(lineup_num * (prio_mix / 100)))
                    cursor2 = collection.find().sort('Own', -1).limit(math.ceil(lineup_num * ((100 - prio_mix) / 100)))
                    raw_display = pd.concat([pd.DataFrame(list(cursor1)), pd.DataFrame(list(cursor2))])
            else:
                cursor = collection.find().sort(prio_var, -1).limit(lineup_num)
                raw_display = pd.DataFrame(list(cursor))

            raw_display = raw_display.drop_duplicates(subset=['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'FLEX'])

            raw_display = raw_display[['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
            dict_columns = ['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'FLEX']
            # Map names
            raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
        elif slate_var == 'Auxiliary Slate':
            collection = db['DK_NHL_Late_name_map']
            cursor = collection.find()
            raw_data = pd.DataFrame(list(cursor))
            names_dict = dict(zip(raw_data['key'], raw_data['value']))
            
            collection = db['DK_NHL_seed_frame_Late Slate']
            if prio_var == None:
                if player_var2 != []:
                    player_columns = ['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'FLEX']
                    query_conditions = []
                    
                    for player in player_var2:
                        # Create a condition for each player to check if they appear in any column
                        player_condition = {'$or': [{col: player} for col in player_columns]}
                        query_conditions.append(player_condition)
                    
                    # Combine all player conditions with $or
                    if query_conditions:
                        filter_query = {'$or': query_conditions}
                        cursor1 = collection.find(filter_query).limit(math.ceil(lineup_num * (prio_mix / 100)))
                        cursor2 = collection.find(filter_query).sort('Own', -1).limit(math.ceil(lineup_num * ((100 - prio_mix) / 100)))
                    else:
                        cursor1 = collection.find().limit(math.ceil(lineup_num * (prio_mix / 100)))
                        cursor2 = collection.find().sort('Own', -1).limit(math.ceil(lineup_num * ((100 - prio_mix) / 100)))
                    raw_display = pd.concat([pd.DataFrame(list(cursor1)), pd.DataFrame(list(cursor2))])
                else:
                    cursor1 = collection.find().limit(math.ceil(lineup_num * (prio_mix / 100)))
                    cursor2 = collection.find().sort('Own', -1).limit(math.ceil(lineup_num * ((100 - prio_mix) / 100)))
                    raw_display = pd.concat([pd.DataFrame(list(cursor1)), pd.DataFrame(list(cursor2))])
            else:
                cursor = collection.find().sort(prio_var, -1).limit(lineup_num)
                raw_display = pd.DataFrame(list(cursor))

            raw_display = raw_display.drop_duplicates(subset=['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'FLEX'])

            raw_display = raw_display[['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
            dict_columns = ['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'FLEX']
            # Map names
            raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
    elif type_var == 'Showdown':
        collection = db[db_translation[slate_var]]
        if prio_var == None:
            if player_var2 != []:
                player_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']
                query_conditions = []
                
                for player in player_var2:
                    # Create a condition for each player to check if they appear in any column
                    player_condition = {'$or': [{col: player} for col in player_columns]}
                    query_conditions.append(player_condition)
                
                # Combine all player conditions with $or
                if query_conditions:
                    filter_query = {'$or': query_conditions}
                    cursor1 = collection.find(filter_query).limit(math.ceil(lineup_num * (prio_mix / 100)))
                    cursor2 = collection.find(filter_query).sort('Own', -1).limit(math.ceil(lineup_num * ((100 - prio_mix) / 100)))
                else:
                    cursor1 = collection.find().limit(math.ceil(lineup_num * (prio_mix / 100)))
                    cursor2 = collection.find().sort('Own', -1).limit(math.ceil(lineup_num * ((100 - prio_mix) / 100)))
                raw_display = pd.concat([pd.DataFrame(list(cursor1)), pd.DataFrame(list(cursor2))])
            else:
                cursor1 = collection.find().limit(math.ceil(lineup_num * (prio_mix / 100)))
                cursor2 = collection.find().sort('Own', -1).limit(math.ceil(lineup_num * ((100 - prio_mix) / 100)))
                raw_display = pd.concat([pd.DataFrame(list(cursor1)), pd.DataFrame(list(cursor2))])
        else:
            cursor = collection.find().sort(prio_var, -1).limit(lineup_num)
            raw_display = pd.DataFrame(list(cursor))

        raw_display = raw_display.drop_duplicates(subset=['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'])

        raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]

    DK_seed = raw_display.to_numpy()

    return DK_seed

@st.cache_resource(ttl = 60)
def init_FD_lineups(prio_var, prio_mix, lineup_num, player_var2, slate_var):

    if prio_var == 'Mix':
        prio_var = None
    
    if type_var == 'Regular':
        if slate_var == 'Main Slate':
            collection = db['FD_NHL_name_map']
            cursor = collection.find()
            raw_data = pd.DataFrame(list(cursor))
            names_dict = dict(zip(raw_data['key'], raw_data['value']))

            collection = db['FD_NHL_seed_frame_Main Slate']
            if prio_var == None:
                if player_var2 != []:
                    player_columns = ['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G']
                    query_conditions = []
                    
                    for player in player_var2:
                        # Create a condition for each player to check if they appear in any column
                        player_condition = {'$or': [{col: player} for col in player_columns]}
                        query_conditions.append(player_condition)
                    
                    # Combine all player conditions with $or
                    if query_conditions:
                        filter_query = {'$or': query_conditions}
                        cursor1 = collection.find(filter_query).limit(math.ceil(lineup_num * (prio_mix / 100)))
                        cursor2 = collection.find(filter_query).sort('Own', -1).limit(math.ceil(lineup_num * ((100 - prio_mix) / 100)))
                    else:
                        cursor1 = collection.find().limit(math.ceil(lineup_num * (prio_mix / 100)))
                        cursor2 = collection.find().sort('Own', -1).limit(math.ceil(lineup_num * ((100 - prio_mix) / 100)))
                    raw_display = pd.concat([pd.DataFrame(list(cursor1)), pd.DataFrame(list(cursor2))])
                else:
                    cursor1 = collection.find().limit(math.ceil(lineup_num * (prio_mix / 100)))
                    cursor2 = collection.find().sort('Own', -1).limit(math.ceil(lineup_num * ((100 - prio_mix) / 100)))
                    raw_display = pd.concat([pd.DataFrame(list(cursor1)), pd.DataFrame(list(cursor2))])
            else:
                cursor = collection.find().sort(prio_var, -1).limit(lineup_num)
                raw_display = pd.DataFrame(list(cursor))
            
            raw_display = raw_display.drop_duplicates(subset=['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G'])

            raw_display = raw_display[['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
            dict_columns = ['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G']
            # Map names
            raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
        elif slate_var == 'Secondary Slate':
            collection = db['FD_NHL_Secondary_name_map']
            cursor = collection.find()
            raw_data = pd.DataFrame(list(cursor))
            names_dict = dict(zip(raw_data['key'], raw_data['value']))
            
            collection = db['FD_NHL_seed_frame_Secondary Slate']
            if prio_var == None:
                if player_var2 != []:
                    player_columns = ['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G']
                    query_conditions = []
                    
                    for player in player_var2:
                        # Create a condition for each player to check if they appear in any column
                        player_condition = {'$or': [{col: player} for col in player_columns]}
                        query_conditions.append(player_condition)
                    
                    # Combine all player conditions with $or
                    if query_conditions:
                        filter_query = {'$or': query_conditions}
                        cursor1 = collection.find(filter_query).limit(math.ceil(lineup_num * (prio_mix / 100)))
                        cursor2 = collection.find(filter_query).sort('Own', -1).limit(math.ceil(lineup_num * ((100 - prio_mix) / 100)))
                    else:
                        cursor1 = collection.find().limit(math.ceil(lineup_num * (prio_mix / 100)))
                        cursor2 = collection.find().sort('Own', -1).limit(math.ceil(lineup_num * ((100 - prio_mix) / 100)))
                    raw_display = pd.concat([pd.DataFrame(list(cursor1)), pd.DataFrame(list(cursor2))])
                else:
                    cursor1 = collection.find().limit(math.ceil(lineup_num * (prio_mix / 100)))
                    cursor2 = collection.find().sort('Own', -1).limit(math.ceil(lineup_num * ((100 - prio_mix) / 100)))
                    raw_display = pd.concat([pd.DataFrame(list(cursor1)), pd.DataFrame(list(cursor2))])
            else:
                cursor = collection.find().sort(prio_var, -1).limit(lineup_num)
                raw_display = pd.DataFrame(list(cursor))

            raw_display = raw_display.drop_duplicates(subset=['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G'])

            raw_display = raw_display[['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
            dict_columns = ['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G']
            # Map names
            raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
        elif slate_var == 'Auxiliary Slate':
            collection = db['FD_NHL_Late_name_map']
            cursor = collection.find()
            raw_data = pd.DataFrame(list(cursor))
            names_dict = dict(zip(raw_data['key'], raw_data['value']))
            
            collection = db['FD_NHL_seed_frame_Late Slate']
            if prio_var == None:
                if player_var2 != []:
                    player_columns = ['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G']
                    query_conditions = []
                    
                    for player in player_var2:
                        # Create a condition for each player to check if they appear in any column
                        player_condition = {'$or': [{col: player} for col in player_columns]}
                        query_conditions.append(player_condition)
                    
                    # Combine all player conditions with $or
                    if query_conditions:
                        filter_query = {'$or': query_conditions}
                        cursor1 = collection.find(filter_query).limit(math.ceil(lineup_num * (prio_mix / 100)))
                        cursor2 = collection.find(filter_query).sort('Own', -1).limit(math.ceil(lineup_num * ((100 - prio_mix) / 100)))
                    else:
                        cursor1 = collection.find().limit(math.ceil(lineup_num * (prio_mix / 100)))
                        cursor2 = collection.find().sort('Own', -1).limit(math.ceil(lineup_num * ((100 - prio_mix) / 100)))
                    raw_display = pd.concat([pd.DataFrame(list(cursor1)), pd.DataFrame(list(cursor2))])
                else:
                    cursor1 = collection.find().limit(math.ceil(lineup_num * (prio_mix / 100)))
                    cursor2 = collection.find().sort('Own', -1).limit(math.ceil(lineup_num * ((100 - prio_mix) / 100)))
                    raw_display = pd.concat([pd.DataFrame(list(cursor1)), pd.DataFrame(list(cursor2))])
            else:
                cursor = collection.find().sort(prio_var, -1).limit(lineup_num)
                raw_display = pd.DataFrame(list(cursor))

            raw_display = raw_display.drop_duplicates(subset=['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G'])

            raw_display = raw_display[['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
            dict_columns = ['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G']
            # Map names
            raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
    elif type_var == 'Showdown':
        collection = db[db_translation[slate_var]]
        if prio_var == None:
            if player_var2 != []:
                player_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']
                query_conditions = []
                
                for player in player_var2:
                    # Create a condition for each player to check if they appear in any column
                    player_condition = {'$or': [{col: player} for col in player_columns]}
                    query_conditions.append(player_condition)
                
                # Combine all player conditions with $or
                if query_conditions:
                    filter_query = {'$or': query_conditions}
                    cursor1 = collection.find(filter_query).limit(math.ceil(lineup_num * (prio_mix / 100)))
                    cursor2 = collection.find(filter_query).sort('Own', -1).limit(math.ceil(lineup_num * ((100 - prio_mix) / 100)))
                else:
                    cursor1 = collection.find().limit(math.ceil(lineup_num * (prio_mix / 100)))
                    cursor2 = collection.find().sort('Own', -1).limit(math.ceil(lineup_num * ((100 - prio_mix) / 100)))
                raw_display = pd.concat([pd.DataFrame(list(cursor1)), pd.DataFrame(list(cursor2))])
            else:
                cursor1 = collection.find().limit(math.ceil(lineup_num * (prio_mix / 100)))
                cursor2 = collection.find().sort('Own', -1).limit(math.ceil(lineup_num * ((100 - prio_mix) / 100)))
                raw_display = pd.concat([pd.DataFrame(list(cursor1)), pd.DataFrame(list(cursor2))])
        else:
            cursor = collection.find().sort(prio_var, -1).limit(lineup_num)
            raw_display = pd.DataFrame(list(cursor))

        raw_display = raw_display.drop_duplicates(subset=['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5'])

        raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]

    FD_seed = raw_display.to_numpy()

    return FD_seed

@st.cache_data
def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

@st.cache_data
def convert_df(array):
    array = pd.DataFrame(array, columns=column_names)
    return array.to_csv().encode('utf-8')

@st.cache_data
def convert_pm_df(array):
    array = pd.DataFrame(array)
    return array.to_csv().encode('utf-8')

@st.cache_data
def convert_hb_df(array, column_names):
    array = pd.DataFrame(array, columns=column_names)
    return array.to_csv().encode('utf-8')

player_frame, line_frame, pp_frame, timestamp = player_stat_table()
dk_id_map = dict(zip(player_frame[player_frame['Site'] == 'Draftkings']['Player'], player_frame[player_frame['Site'] == 'Draftkings']['player_id']))
fd_id_map = dict(zip(player_frame[player_frame['Site'] == 'Fanduel']['Player'], player_frame[player_frame['Site'] == 'Fanduel']['player_id']))
dk_sd_id_map = dict(zip(player_frame[player_frame['Site'] == 'Draftkings']['Player'], player_frame[player_frame['Site'] == 'Draftkings']['player_id']))
fd_sd_id_map = dict(zip(player_frame[player_frame['Site'] == 'Fanduel']['Player'], player_frame[player_frame['Site'] == 'Fanduel']['player_id']))
t_stamp = f"Last Update: " + str(timestamp) + f" CST"

slate_names_dk = []
slate_name_lookup_dk = {}
    
slate_names_fd = []
slate_name_lookup_fd = {}

app_load_reset_column, app_view_site_column, = st.columns([1, 9])
with app_load_reset_column:
    if st.button("Load/Reset Data", key='reset_data_button'):
        st.cache_data.clear()
        player_frame, line_frame, pp_frame, timestamp = player_stat_table()
        dk_id_map = dict(zip(player_frame[player_frame['Site'] == 'Draftkings']['Player'], player_frame[player_frame['Site'] == 'Draftkings']['player_id']))
        fd_id_map = dict(zip(player_frame[player_frame['Site'] == 'Fanduel']['Player'], player_frame[player_frame['Site'] == 'Fanduel']['player_id']))
        dk_sd_id_map = dict(zip(player_frame[player_frame['Site'] == 'Draftkings']['Player'], player_frame[player_frame['Site'] == 'Draftkings']['player_id']))
        fd_sd_id_map = dict(zip(player_frame[player_frame['Site'] == 'Fanduel']['Player'], player_frame[player_frame['Site'] == 'Fanduel']['player_id']))
        dk_lineups = init_DK_lineups('Regular', 'Main Slate', 'proj', 50, dk_showdown_db_translation, 25000, [])
        fd_lineups = init_FD_lineups('proj', 50, 25000, [], 'Main Slate')
        for key in st.session_state.keys():
            del st.session_state[key]
with app_view_site_column:
    with st.container():
        app_view_column, app_site_column, app_type_column, hatter_column = st.columns([3, 3, 3, 3])
        with app_view_column:
            view_var = st.selectbox("Select view", ["Simple", "Advanced"], key='view_selectbox')
        with app_site_column:
            site_var = st.selectbox("What site do you want to view?", ('Draftkings', 'Fanduel'), key='site_selectbox')
        with app_type_column:
            type_var = st.selectbox("What type of data do you want to view?", ('Regular', 'Showdown'), key='type_selectbox')
        with hatter_column:
            hatter_var = st.selectbox("Flowchart:", ('No Hatter', 'Hatter'), key='hatter_selectbox')

# selected_tab = st.segmented_control(
#     "Select Tab",
#     options=["Player Range of Outcomes", "Line Combo Range of Outcomes", "Power Play Range of Outcomes", "Optimals"],
#     selection_mode='single',
#     default='Player Range of Outcomes',
#     width='stretch',
#     label_visibility='collapsed',
#     key='tab_selector'
# )

tab1, tab2, tab3, tab4 = st.tabs(["Player Range of Outcomes", "Line Combo Range of Outcomes", "Power Play Range of Outcomes", "Optimals"])

with tab1:
    with st.expander("Info and Filters"):
        with st.container():
            st.info("Advanced view includes all stats and thresholds, simple includes just basic columns for ease of use on mobile")
        st.info(t_stamp)
        if st.button("Load/Reset Data", key='reset1'):
            st.cache_data.clear()
            player_frame, line_frame, pp_frame, timestamp = player_stat_table()
            dk_id_map = dict(zip(player_frame[player_frame['Site'] == 'Draftkings']['Player'], player_frame[player_frame['Site'] == 'Draftkings']['player_id']))
            fd_id_map = dict(zip(player_frame[player_frame['Site'] == 'Fanduel']['Player'], player_frame[player_frame['Site'] == 'Fanduel']['player_id']))
            dk_sd_id_map = dict(zip(player_frame[player_frame['Site'] == 'Draftkings']['Player'], player_frame[player_frame['Site'] == 'Draftkings']['player_id']))
            fd_sd_id_map = dict(zip(player_frame[player_frame['Site'] == 'Fanduel']['Player'], player_frame[player_frame['Site'] == 'Fanduel']['player_id']))
            dk_lineups = init_DK_lineups('Regular', 'Main Slate', 'proj', 50, dk_showdown_db_translation, 25000, [])
            fd_lineups = init_FD_lineups('proj', 50, 25000, [], 'Main Slate')
            t_stamp = f"Last Update: " + str(timestamp) + f" CST"
        slate_var1 = st.selectbox("Which slate would you like to view?", ('Main Slate', 'Secondary Slate', 'Auxiliary Slate'), key='slate_var1')
        split_var1 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
        if split_var1 == 'Specific Games':
            team_var1 = st.multiselect('Which teams would you like to include in the ROO?', options = player_frame['Team'].unique(), key='team_var1')
        elif split_var1 == 'Full Slate Run':
            team_var1 = player_frame.Team.values.tolist()
        pos_split1 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split1')
        if pos_split1 == 'Specific Positions':
            pos_var1 = st.multiselect('What Positions would you like to view?', options = ['C', 'W', 'D', 'G'])
        elif pos_split1 == 'All Positions':
            pos_var1 = 'All'
        sal_var1 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 20000), key='sal_var1')

    final_Proj = player_frame[player_frame['Site'] == str(site_var)]
    final_Proj = final_Proj[final_Proj['Type'] == 'Basic']
    final_Proj = final_Proj[final_Proj['Slate'] == slate_var1]
    final_Proj = final_Proj[player_frame['Team'].isin(team_var1)]
    final_Proj = final_Proj[final_Proj['Salary'] >= sal_var1[0]]
    final_Proj = final_Proj[final_Proj['Salary'] <= sal_var1[1]]
    if hatter_var == 'Hatter':
        final_Proj = final_Proj[final_Proj['Team'] == 'COL']
    if pos_var1 != 'All':
            final_Proj = final_Proj[final_Proj['Position'].str.contains('|'.join(pos_var1))]
            final_Proj = final_Proj.sort_values(by='Median', ascending=False)
    if pos_var1 == 'All':
            final_Proj = final_Proj.sort_values(by='Median', ascending=False)
    
    if type_var == 'Regular':
        pm_export = final_Proj[['Player', 'Position', 'Team', 'Salary', 'Median', 'Own']]
        pm_export['captain ownership'] = pm_export['Own'] / 6
        pm_export = pm_export.rename(columns={'Own': 'ownership', 'Median': 'median', 'Player': 'player_names', 'Position': 'position', 'Team': 'team', 'Salary': 'salary'})
    elif type_var == 'Showdown':
        pm_export = final_Proj[['Player', 'Position', 'Team', 'Salary', 'Median', 'Own', 'CPT_Own']]
        pm_export['Salary'] = pm_export['Salary'] / 1.6
        pm_export = pm_export.rename(columns={'Own': 'ownership', 'Median': 'median', 'Player': 'player_names', 'Position': 'position', 'Team': 'team', 'Salary': 'salary', 'CPT_Own': 'captain ownership'})
    
    player_reg_dl_col, player_pm_dl_col, player_dl_blank_col = st.columns([2, 2, 10])
    with player_reg_dl_col:
        st.download_button(
            label="Export ROO (Regular)",
            data=convert_df_to_csv(final_Proj),
            file_name='NHL_ROO_export.csv',
            mime='text/csv',
        )
    with player_pm_dl_col:
        st.download_button(
            label="Export ROO (Portfolio Manager)",
            data=convert_df_to_csv(pm_export),
            file_name='NHL_ROO_export.csv',
            mime='text/csv',
        )
    
    if view_var == 'Advanced':
        display_proj = final_Proj[['Player', 'Position', 'Line', 'PP Unit', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%',
                                    'Own', 'Small Field Own%', 'Large Field Own%', 'Cash Own%', 'CPT_Own']]
    elif view_var == 'Simple':
        display_proj = final_Proj[['Player', 'Position', 'Salary', 'Median', '3x%', 'Own']]
    st.dataframe(display_proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height = 1000, use_container_width = True, hide_index=True)
    st.download_button(
            label="Export Tables",
            data=convert_df_to_csv(display_proj),
            file_name='NHL_player_export.csv',
            mime='text/csv',
    )

with tab2:
    with st.expander("Info and Filters"):
        with st.container():
            st.info("Advanced view includes all stats and thresholds, simple includes just basic columns for ease of use on mobile")
        st.info(t_stamp)
        if st.button("Load/Reset Data", key='reset2'):
            st.cache_data.clear()
            player_frame, line_frame, pp_frame, timestamp = player_stat_table()
            dk_id_map = dict(zip(player_frame[player_frame['Site'] == 'Draftkings']['Player'], player_frame[player_frame['Site'] == 'Draftkings']['player_id']))
            fd_id_map = dict(zip(player_frame[player_frame['Site'] == 'Fanduel']['Player'], player_frame[player_frame['Site'] == 'Fanduel']['player_id']))
            dk_sd_id_map = dict(zip(player_frame[player_frame['Site'] == 'Draftkings']['Player'], player_frame[player_frame['Site'] == 'Draftkings']['player_id']))
            fd_sd_id_map = dict(zip(player_frame[player_frame['Site'] == 'Fanduel']['Player'], player_frame[player_frame['Site'] == 'Fanduel']['player_id']))
            dk_lineups = init_DK_lineups('Regular', 'Main Slate', 'proj', 50, dk_showdown_db_translation, 25000, [])
            fd_lineups = init_FD_lineups('proj', 50, 25000, [], 'Main Slate')
            t_stamp = f"Last Update: " + str(timestamp) + f" CST"
        slate_var2 = st.selectbox("Which slate would you like to view?", ('Main Slate', 'Secondary Slate', 'Auxiliary Slate'), key='slate_var2')
        sal_var2 = st.slider("Is there a certain price range you want to view?", 5000, 40000, (5000, 40000), key='sal_var2')

    final_line_combos = line_frame[line_frame['Site'] == str(site_var)]
    final_line_combos = final_line_combos[final_line_combos['Type'] == 'Basic']
    final_line_combos = final_line_combos[final_line_combos['Slate'] == slate_var2]
    final_line_combos = final_line_combos[final_line_combos['Salary'] >= sal_var2[0]]
    final_line_combos = final_line_combos[final_line_combos['Salary'] <= sal_var2[1]]
    final_line_combos = final_line_combos.drop_duplicates(subset=['Player'])
    final_line_combos = final_line_combos.sort_values(by='Median', ascending=False)
    if hatter_var == 'Hatter':
        final_line_combos = final_line_combos[final_line_combos['Player'].str.contains('COL')]

    if view_var == 'Advanced':
        display_proj_lines = final_line_combos[['Player', 'SK1', 'SK2', 'SK3', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '50+%', '2x%', '3x%', '4x%',
                                    'Own']]
    elif view_var == 'Simple':
        display_proj_lines = final_line_combos[['SK1', 'SK2', 'SK3', 'Salary', 'Median', '3x%', 'Own']]
    st.dataframe(display_proj_lines.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height = 1000, use_container_width = True, hide_index=True)
    st.download_button(
            label="Export Tables",
            data=convert_df_to_csv(display_proj_lines),
            file_name='NHL_linecombos_export.csv',
            mime='text/csv',
    )

with tab3:
    with st.expander("Info and Filters"):
        with st.container():
            st.info("Advanced view includes all stats and thresholds, simple includes just basic columns for ease of use on mobile")
        st.info(t_stamp)
        if st.button("Load/Reset Data", key='reset3'):
            st.cache_data.clear()
            player_frame, line_frame, pp_frame, timestamp = player_stat_table()
            dk_id_map = dict(zip(player_frame[player_frame['Site'] == 'Draftkings']['Player'], player_frame[player_frame['Site'] == 'Draftkings']['player_id']))
            fd_id_map = dict(zip(player_frame[player_frame['Site'] == 'Fanduel']['Player'], player_frame[player_frame['Site'] == 'Fanduel']['player_id']))
            dk_sd_id_map = dict(zip(player_frame[player_frame['Site'] == 'Draftkings']['Player'], player_frame[player_frame['Site'] == 'Draftkings']['player_id']))
            fd_sd_id_map = dict(zip(player_frame[player_frame['Site'] == 'Fanduel']['Player'], player_frame[player_frame['Site'] == 'Fanduel']['player_id']))
            dk_lineups = init_DK_lineups('Regular', 'Main Slate', 'proj', 50, dk_showdown_db_translation, 25000, [])
            fd_lineups = init_FD_lineups('proj', 50, 25000, [], 'Main Slate')
            t_stamp = f"Last Update: " + str(timestamp) + f" CST"
        slate_var3 = st.selectbox("Which slate would you like to view?", ('Main Slate', 'Secondary Slate', 'Auxiliary Slate'), key='slate_var3')
        sal_var3 = st.slider("Is there a certain price range you want to view?", 5000, 40000, (5000, 40000), key='sal_var3')
    
    final_pp_combos = pp_frame[pp_frame['Site'] == str(site_var)]
    final_pp_combos = final_pp_combos[final_pp_combos['Type'] == 'Basic']
    final_pp_combos = final_pp_combos[final_pp_combos['Slate'] == slate_var3]
    final_pp_combos = final_pp_combos[final_pp_combos['Salary'] >= sal_var3[0]]
    final_pp_combos = final_pp_combos[final_pp_combos['Salary'] <= sal_var3[1]]
    final_pp_combos = final_pp_combos.drop_duplicates(subset=['Player'])
    final_pp_combos = final_pp_combos.sort_values(by='Median', ascending=False)
    if hatter_var == 'Hatter':
        final_pp_combos = final_pp_combos[final_pp_combos['Player'].str.contains('COL')]

    if view_var == 'Advanced':
        display_proj_pp = final_pp_combos[['Player', 'SK1', 'SK2', 'SK3', 'SK4', 'SK5', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '75+%', '2x%', '3x%', '4x%',
                                    'Own']]
    elif view_var == 'Simple':
        display_proj_pp = final_pp_combos[['SK1', 'SK2', 'SK3', 'SK4', 'SK5', 'Salary', 'Median', '3x%', 'Own']]
    st.dataframe(display_proj_pp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height = 1000, use_container_width = True, hide_index=True)
    st.download_button(
            label="Export Tables",
            data=convert_df_to_csv(display_proj_pp),
            file_name='NHL_powerplay_export.csv',
            mime='text/csv',
    )

with tab4:
    player_frame, line_frame, pp_frame, timestamp = player_stat_table()
    dk_id_map = dict(zip(player_frame[player_frame['Site'] == 'Draftkings']['Player'], player_frame[player_frame['Site'] == 'Draftkings']['player_id']))
    fd_id_map = dict(zip(player_frame[player_frame['Site'] == 'Fanduel']['Player'], player_frame[player_frame['Site'] == 'Fanduel']['player_id']))
    dk_sd_id_map = dict(zip(player_frame[player_frame['Site'] == 'Draftkings']['Player'], player_frame[player_frame['Site'] == 'Draftkings']['player_id']))
    fd_sd_id_map = dict(zip(player_frame[player_frame['Site'] == 'Fanduel']['Player'], player_frame[player_frame['Site'] == 'Fanduel']['player_id']))
    if type_var == 'Regular':
        t_stamp = f"Last Update: " + str(timestamp) + f" CST"
    elif type_var == 'Showdown':
        t_stamp = f"Last Update: " + str(timestamp) + f" CST"
    st.header("Optimals")
    with st.expander("Info and Filters"):
        st.info("These filters will display various optimals in the table below to pick from. If you want to export the entire set of 10,000 optimals, hit the 'Prepare full data export' button. If you would like to apply the filters here to the 10,000 optimals before you export, use the 'Prepare full data export (Filter)' button.")
        prio_col, optimals_site_col, optimals_macro_col, optimals_salary_col, optimals_stacks_col = st.columns(5)

        with prio_col:
            prio_var = st.radio("Which priority variable do you want to use?", ('proj', 'Own', 'Mix'), key='prio_var_radio')
            prio_mix = st.number_input("If Mix, what split of Projection/Ownership to dedicate to Projection?", min_value=0, max_value=100, value=50, step=1)
            lineup_num = st.number_input("How many lineups do you want to work with?", min_value=1000, max_value=50000, value=25000, step=100, key='lineup_download_var_input')

        with optimals_site_col:
            if type_var == 'Regular':
                if site_var == 'Draftkings':
                    raw_baselines = player_frame[player_frame['Site'] == 'Draftkings']
                elif site_var == 'Fanduel':
                    raw_baselines = player_frame[player_frame['Site'] == 'Fanduel']
            elif type_var == 'Showdown':
                if site_var == 'Draftkings':
                    raw_baselines = player_frame[player_frame['Site'] == 'Draftkings']
                elif site_var == 'Fanduel':
                    raw_baselines = player_frame[player_frame['Site'] == 'Fanduel']
            if site_var == 'Draftkings':
                slate_var4 = st.radio("Which slate data are you loading?", (['Main Slate', 'Secondary Slate', 'Auxiliary Slate']), key='slate_var4_radio')
            elif site_var == 'Fanduel':
                slate_var4 = st.radio("Which slate data are you loading?", (['Main Slate', 'Secondary Slate', 'Auxiliary Slate']), key='slate_var4_radio')
            
        with optimals_macro_col:
            lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1, key='lineup_num_var_input')
            player_var2 = st.multiselect('Query for lineups including:', options = raw_baselines['Player'].unique(), key='player_var2_multiselect', default=[])
        
        if type_var == 'Regular':
            if site_var == 'Draftkings':
                dk_lineups = init_DK_lineups(type_var, slate_var4, prio_var, prio_mix, dk_showdown_db_translation, lineup_num, player_var2)
            elif site_var == 'Fanduel':
                fd_lineups = init_FD_lineups(prio_var, prio_mix, lineup_num, player_var2, slate_var4)
        elif type_var == 'Showdown':
            if site_var == 'Draftkings':
                dk_lineups = init_DK_lineups(type_var, slate_name_lookup_dk[slate_var4], prio_var, prio_mix, dk_showdown_db_translation, lineup_num, player_var2)
            elif site_var == 'Fanduel':
                fd_lineups = init_FD_lineups(prio_var, prio_mix, lineup_num, player_var2, slate_var4)

        with optimals_salary_col:
            if site_var == 'Draftkings':
                salary_min_var = st.number_input("Minimum salary used", min_value = 0, max_value = 50000, value = 49000, step = 100, key = 'salary_min_var_dk')
                salary_max_var = st.number_input("Maximum salary used", min_value = 0, max_value = 50000, value = 50000, step = 100, key = 'salary_max_var_dk')
            elif site_var == 'Fanduel':
                salary_min_var = st.number_input("Minimum salary used", min_value = 0, max_value = 55000, value = 54000, step = 100, key = 'salary_min_var_fd')
                salary_max_var = st.number_input("Maximum salary used", min_value = 0, max_value = 55000, value = 55000, step = 100, key = 'salary_max_var_fd')
        with optimals_stacks_col:
            if site_var == 'Draftkings':
                min_stacks_var = st.number_input("Minimum stacks used", min_value = 0, max_value = 5, value = 1, step = 1, key = 'min_stacks_var_dk')
                max_stacks_var = st.number_input("Maximum stacks used", min_value = 0, max_value = 5, value = 5, step = 1, key = 'max_stacks_var_dk')
            elif site_var == 'Fanduel':
                min_stacks_var = st.number_input("Minimum stacks used", min_value = 0, max_value = 4, value = 1, step = 1, key = 'min_stacks_var_fd')
                max_stacks_var = st.number_input("Maximum stacks used", min_value = 0, max_value = 4, value = 4, step = 1, key = 'max_stacks_var_fd')
        
        
        if site_var == 'Draftkings':
            if type_var == 'Regular':
                ROO_slice = raw_baselines
                player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary']))
                column_names = dk_columns
            elif type_var == 'Showdown':
                player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary']))
                column_names = dk_sd_columns
            
                    
        elif site_var == 'Fanduel':
            if type_var == 'Regular':
                ROO_slice = raw_baselines
                player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary']))
                column_names = fd_columns
            elif type_var == 'Showdown':
                player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary']))
                column_names = fd_sd_columns

        reg_dl_col, filtered_dl_col, blank_dl_col = st.columns([2, 2, 6])
        with reg_dl_col:
            if st.button("Prepare full data export", key='data_export_button'):
                name_export = pd.DataFrame(st.session_state.working_seed.copy(), columns=column_names)
                data_export = pd.DataFrame(st.session_state.working_seed.copy(), columns=column_names)
                if site_var == 'Draftkings':
                    if type_var == 'Regular':
                        map_columns = ['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'FLEX']
                        for col_idx in map_columns:
                            data_export[col_idx] = data_export[col_idx].map(dk_id_map)
                    elif type_var == 'Showdown':
                        map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']
                        for col_idx in map_columns:
                            data_export[col_idx] = data_export[col_idx].map(dk_sd_id_map)
                elif site_var == 'Fanduel':
                    if type_var == 'Regular':
                        map_columns = ['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G']
                        for col_idx in map_columns:
                            data_export[col_idx] = data_export[col_idx].map(fd_id_map)
                    elif type_var == 'Showdown':
                        map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']
                        for col_idx in map_columns:
                            data_export[col_idx] = data_export[col_idx].map(fd_sd_id_map)
                reg_opt_col, pm_opt_col = st.columns(2)
                with reg_opt_col:
                    st.download_button(
                        label="Export optimals set (IDs)",
                        data=convert_df(data_export),
                        file_name='NHL_optimals_export.csv',
                        mime='text/csv',
                        key='export_optimals_ids_button'
                    )
                    st.download_button(
                        label="Export optimals set (Names)",
                        data=convert_df(name_export),
                        file_name='NHL_optimals_export.csv',
                        mime='text/csv',
                        key='export_optimals_names_button'
                    )
                with pm_opt_col:
                    if site_var == 'Draftkings':
                        if type_var == 'Regular':
                            data_export = data_export.set_index('C1').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
                        elif type_var == 'Showdown':
                            data_export = data_export.set_index('CPT').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
                    elif site_var == 'Fanduel':
                        if type_var == 'Regular':
                            data_export = data_export.set_index('C1').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
                        elif type_var == 'Showdown':
                            data_export = data_export.set_index('CPT').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
                    st.download_button(
                        label="Portfolio Manager Export (IDs)",
                        data=convert_pm_df(data_export),
                        file_name='NHL_optimals_export.csv',
                        mime='text/csv',
                        key='export_pm_ids_button'
                    )
                    
                    if site_var == 'Draftkings':
                        if type_var == 'Regular':
                            name_export = name_export.set_index('C1').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
                        elif type_var == 'Showdown':
                            name_export = name_export.set_index('CPT').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
                    elif site_var == 'Fanduel':
                        if type_var == 'Regular':
                            name_export = name_export.set_index('C1').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
                        elif type_var == 'Showdown':
                            name_export = name_export.set_index('CPT').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
                    st.download_button(
                        label="Portfolio Manager Export (Names)",
                        data=convert_pm_df(name_export),
                        file_name='NHL_optimals_export.csv',
                        mime='text/csv',
                        key='export_pm_names_button'
                    )
        with filtered_dl_col:
            if st.button("Prepare full data export (Filtered)", key='data_export_filtered_button'):
                name_export = pd.DataFrame(st.session_state.working_seed.copy(), columns=column_names)
                data_export = pd.DataFrame(st.session_state.working_seed.copy(), columns=column_names)
                if site_var == 'Draftkings':
                    if type_var == 'Regular':
                        map_columns = ['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'FLEX']
                        for col_idx in map_columns:
                            data_export[col_idx] = data_export[col_idx].map(dk_id_map)
                    elif type_var == 'Showdown':
                        map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']
                        for col_idx in map_columns:
                            data_export[col_idx] = data_export[col_idx].map(dk_sd_id_map)
                    
                elif site_var == 'Fanduel':
                    if type_var == 'Regular':
                        map_columns = ['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G']
                        for col_idx in map_columns:
                            data_export[col_idx] = data_export[col_idx].map(fd_id_map)
                    elif type_var == 'Showdown':
                        map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']
                        for col_idx in map_columns:
                            data_export[col_idx] = data_export[col_idx].map(fd_sd_id_map)
                    
                data_export = data_export[data_export['salary'] >= salary_min_var]
                data_export = data_export[data_export['salary'] <= salary_max_var]
                data_export = data_export[data_export['Team_count'] >= min_stacks_var]
                data_export = data_export[data_export['Team_count'] <= max_stacks_var]

                name_export = name_export[name_export['salary'] >= salary_min_var]
                name_export = name_export[name_export['salary'] <= salary_max_var]
                name_export = name_export[name_export['Team_count'] >= min_stacks_var]
                name_export = name_export[name_export['Team_count'] <= max_stacks_var]
                
                reg_opt_col, pm_opt_col = st.columns(2)
                with reg_opt_col:
                    st.download_button(
                        label="Export optimals set (IDs)",
                        data=convert_df(data_export),
                        file_name='NHL_optimals_export.csv',
                        mime='text/csv',
                        key='export_filtered_optimals_ids_button'
                    )
                    st.download_button(
                        label="Export optimals set (Names)",
                        data=convert_df(name_export),
                        file_name='NHL_optimals_export.csv',
                        mime='text/csv',
                        key='export_filtered_optimals_names_button'
                    )
                with pm_opt_col:
                    if site_var == 'Draftkings':
                        if type_var == 'Regular':
                            data_export = data_export.set_index('C1').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
                        elif type_var == 'Showdown':
                            data_export = data_export.set_index('CPT').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
                    elif site_var == 'Fanduel':
                        if type_var == 'Regular':
                            data_export = data_export.set_index('C1').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
                        elif type_var == 'Showdown':
                            data_export = data_export.set_index('CPT').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
                    st.download_button(
                        label="Portfolio Manager Export (IDs)",
                        data=convert_pm_df(data_export),
                        file_name='NHL_optimals_export.csv',
                        mime='text/csv',
                        key='export_filtered_pm_ids_button'
                    )
                    
                    if site_var == 'Draftkings':
                        if type_var == 'Regular':
                            name_export = name_export.set_index('C1').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
                        elif type_var == 'Showdown':
                            name_export = name_export.set_index('CPT').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
                    elif site_var == 'Fanduel':
                        if type_var == 'Regular':
                            name_export = name_export.set_index('C1').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
                        elif type_var == 'Showdown':
                            name_export = name_export.set_index('CPT').drop(columns=['salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'], axis=1)
                    st.download_button(
                        label="Portfolio Manager Export (Names)",
                        data=convert_pm_df(name_export),
                        file_name='NHL_optimals_export.csv',
                        mime='text/csv',
                        key='export_filtered_pm_names_button'
                    )
        
    if site_var == 'Draftkings':
        if 'working_seed' in st.session_state:
            st.session_state.working_seed = st.session_state.working_seed
            if player_var2 != []:
                st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
            elif player_var2 == []:
                st.session_state.working_seed = dk_lineups.copy()
            st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
        elif 'working_seed' not in st.session_state:
            st.session_state.working_seed = dk_lineups.copy()
            st.session_state.working_seed = st.session_state.working_seed
            if player_var2 != []:
                st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
            elif player_var2 == []:
                st.session_state.working_seed = dk_lineups.copy()
            st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
        
    elif site_var == 'Fanduel':
        if 'working_seed' in st.session_state:
            st.session_state.working_seed = st.session_state.working_seed
            if player_var2 != []:
                st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
            elif player_var2 == []:
                st.session_state.working_seed = fd_lineups.copy()
            st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
        elif 'working_seed' not in st.session_state:
            st.session_state.working_seed = fd_lineups.copy()
            st.session_state.working_seed = st.session_state.working_seed
            if player_var2 != []:
                st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
            elif player_var2 == []:
                st.session_state.working_seed = fd_lineups.copy()
            st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
    st.session_state.data_export_display = st.session_state.data_export_display[st.session_state.data_export_display['salary'] >= salary_min_var]
    st.session_state.data_export_display = st.session_state.data_export_display[st.session_state.data_export_display['salary'] <= salary_max_var]
    st.session_state.data_export_display = st.session_state.data_export_display[st.session_state.data_export_display['Team_count'] >= min_stacks_var]
    st.session_state.data_export_display = st.session_state.data_export_display[st.session_state.data_export_display['Team_count'] <= max_stacks_var]
    export_file = st.session_state.data_export_display.copy()
    name_export = st.session_state.data_export_display.copy()
    if site_var == 'Draftkings':
        if type_var == 'Regular':
            map_columns = ['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'FLEX']
            for col_idx in map_columns:
                export_file[col_idx] = export_file[col_idx].map(dk_id_map)
        elif type_var == 'Showdown':
            map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']
            for col_idx in map_columns:
                export_file[col_idx] = export_file[col_idx].map(dk_sd_id_map)
    elif site_var == 'Fanduel':
        if type_var == 'Regular':
            map_columns = ['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G']
            for col_idx in map_columns:
                export_file[col_idx] = export_file[col_idx].map(fd_id_map)
        elif type_var == 'Showdown':
            map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']
            for col_idx in map_columns:
                export_file[col_idx] = export_file[col_idx].map(fd_sd_id_map)
            
    with st.container():
        if st.button("Reset Optimals", key='reset_optimals_button'):
            for key in st.session_state.keys():
                del st.session_state[key]
            if site_var == 'Draftkings':
                st.session_state.working_seed = dk_lineups.copy()
            elif site_var == 'Fanduel':
                st.session_state.working_seed = fd_lineups.copy()
        if 'data_export_display' in st.session_state:
            st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)
        st.download_button(
            label="Export display optimals (IDs)",
            data=convert_df(export_file),
            file_name='NHL_display_optimals.csv',
            mime='text/csv',
            key='export_display_optimals_ids_button'
        )
        st.download_button(
            label="Export display optimals (Names)",
            data=convert_df(name_export),
            file_name='NHL_display_optimals.csv',
            mime='text/csv',
            key='export_display_optimals_names_button'
        )
    
    with st.container():
        if type_var == 'Regular':
            if 'working_seed' in st.session_state:
                # Create a new dataframe with summary statistics
                if site_var == 'Draftkings':
                    summary_df = pd.DataFrame({
                        'Metric': ['Min', 'Average', 'Max', 'STDdev'],
                        'Salary': [
                            np.min(st.session_state.working_seed[:,9]),
                            np.mean(st.session_state.working_seed[:,9]),
                            np.max(st.session_state.working_seed[:,9]),
                            np.std(st.session_state.working_seed[:,9])
                        ],
                        'Proj': [
                            np.min(st.session_state.working_seed[:,10]),
                            np.mean(st.session_state.working_seed[:,10]),
                            np.max(st.session_state.working_seed[:,10]),
                            np.std(st.session_state.working_seed[:,10])
                        ],
                        'Own': [
                            np.min(st.session_state.working_seed[:,15]),
                            np.mean(st.session_state.working_seed[:,15]),
                            np.max(st.session_state.working_seed[:,15]),
                            np.std(st.session_state.working_seed[:,15])
                        ]
                    })
                elif site_var == 'Fanduel':
                    summary_df = pd.DataFrame({
                        'Metric': ['Min', 'Average', 'Max', 'STDdev'],
                        'Salary': [
                            np.min(st.session_state.working_seed[:,9]),
                            np.mean(st.session_state.working_seed[:,9]),
                            np.max(st.session_state.working_seed[:,9]),
                            np.std(st.session_state.working_seed[:,9])
                        ],
                        'Proj': [
                            np.min(st.session_state.working_seed[:,10]),
                            np.mean(st.session_state.working_seed[:,10]),
                            np.max(st.session_state.working_seed[:,10]),
                            np.std(st.session_state.working_seed[:,10])
                        ],
                        'Own': [
                            np.min(st.session_state.working_seed[:,15]),
                            np.mean(st.session_state.working_seed[:,15]),
                            np.max(st.session_state.working_seed[:,15]),
                            np.std(st.session_state.working_seed[:,15])
                        ]
                    })
        elif type_var == 'Showdown':
            if 'working_seed' in st.session_state:
                # Create a new dataframe with summary statistics
                if site_var == 'Draftkings':
                    summary_df = pd.DataFrame({
                        'Metric': ['Min', 'Average', 'Max', 'STDdev'],
                        'Salary': [
                            np.min(st.session_state.working_seed[:,6]),
                            np.mean(st.session_state.working_seed[:,6]),
                            np.max(st.session_state.working_seed[:,6]),
                            np.std(st.session_state.working_seed[:,6])
                        ],
                        'Proj': [
                            np.min(st.session_state.working_seed[:,7]),
                            np.mean(st.session_state.working_seed[:,7]),
                            np.max(st.session_state.working_seed[:,7]),
                            np.std(st.session_state.working_seed[:,7])
                        ],
                        'Own': [
                            np.min(st.session_state.working_seed[:,12]),
                            np.mean(st.session_state.working_seed[:,12]),
                            np.max(st.session_state.working_seed[:,12]),
                            np.std(st.session_state.working_seed[:,12])
                        ]
                    })
                elif site_var == 'Fanduel':
                    summary_df = pd.DataFrame({
                        'Metric': ['Min', 'Average', 'Max', 'STDdev'],
                        'Salary': [
                            np.min(st.session_state.working_seed[:,6]),
                            np.mean(st.session_state.working_seed[:,6]),
                            np.max(st.session_state.working_seed[:,6]),
                            np.std(st.session_state.working_seed[:,6])
                        ],
                        'Proj': [
                            np.min(st.session_state.working_seed[:,7]),
                            np.mean(st.session_state.working_seed[:,7]),
                            np.max(st.session_state.working_seed[:,7]),
                            np.std(st.session_state.working_seed[:,7])
                        ],
                        'Own': [
                            np.min(st.session_state.working_seed[:,12]),
                            np.mean(st.session_state.working_seed[:,12]),
                            np.max(st.session_state.working_seed[:,12]),
                            np.std(st.session_state.working_seed[:,12])
                        ]
                    })

        # Set the index of the summary dataframe as the "Metric" column
        summary_df = summary_df.set_index('Metric')

        # Display the summary dataframe
        st.subheader("Optimal Statistics")
        st.dataframe(summary_df.style.format({
            'Salary': '{:.2f}',
            'Proj': '{:.2f}',
            'Own': '{:.2f}'
        }).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True)

    with st.container():
        display_freq_tab, seed_frame_freq_tab = st.tabs(["Display Frequency", "Seed Frame Frequency"])
        with display_freq_tab:
            if 'data_export_display' in st.session_state:
                if site_var == 'Draftkings':
                    if type_var == 'Regular':
                        player_columns = st.session_state.data_export_display.iloc[:, :9]
                    elif type_var == 'Showdown':
                        player_columns = st.session_state.data_export_display.iloc[:, :6]
                elif site_var == 'Fanduel':
                    if type_var == 'Regular':
                        player_columns = st.session_state.data_export_display.iloc[:, :9]
                    elif type_var == 'Showdown':
                        player_columns = st.session_state.data_export_display.iloc[:, :6]
                
                # Flatten the DataFrame and count unique values
                value_counts = player_columns.values.flatten().tolist()
                value_counts = pd.Series(value_counts).value_counts()
                
                percentages = (value_counts / lineup_num_var * 100).round(2)
                
                # Create a DataFrame with the results
                summary_df = pd.DataFrame({
                    'Player': value_counts.index,
                    'Frequency': value_counts.values,
                    'Percentage': percentages.values
                })
                
                # Sort by frequency in descending order
                summary_df['Salary'] = summary_df['Player'].map(player_salaries)
                summary_df = summary_df[['Player', 'Salary', 'Frequency', 'Percentage']]
                summary_df = summary_df.sort_values('Frequency', ascending=False)
                summary_df = summary_df.set_index('Player')
                
                # Display the table
                st.write("Player Frequency Table:")
                st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True)
            
                st.download_button(
                    label="Export player frequency",
                    data=convert_df_to_csv(summary_df),
                    file_name='NHL_player_frequency.csv',
                    mime='text/csv',
                    key='export_player_frequency_button'
                )
        with seed_frame_freq_tab:
            if 'working_seed' in st.session_state:
                if site_var == 'Draftkings':
                    if type_var == 'Regular':
                        player_columns = st.session_state.working_seed[:, :9]
                    elif type_var == 'Showdown':
                        player_columns = st.session_state.working_seed[:, :6]
                elif site_var == 'Fanduel':
                    if type_var == 'Regular':
                        player_columns = st.session_state.working_seed[:, :9]
                    elif type_var == 'Showdown':
                        player_columns = st.session_state.working_seed[:, :6]
                
                # Flatten the DataFrame and count unique values
                value_counts = player_columns.flatten().tolist()
                value_counts = pd.Series(value_counts).value_counts()
                
                percentages = (value_counts / len(st.session_state.working_seed) * 100).round(2)
                # Create a DataFrame with the results
                summary_df = pd.DataFrame({
                    'Player': value_counts.index,
                    'Frequency': value_counts.values,
                    'Percentage': percentages.values
                })
                
                # Sort by frequency in descending order
                summary_df['Salary'] = summary_df['Player'].map(player_salaries)
                summary_df = summary_df[['Player', 'Salary', 'Frequency', 'Percentage']]
                summary_df = summary_df.sort_values('Frequency', ascending=False)
                summary_df = summary_df.set_index('Player')
                
                # Display the table
                st.write("Seed Frame Frequency Table:")
                st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True)
            
                st.download_button(
                    label="Export seed frame frequency",
                    data=convert_df_to_csv(summary_df),
                    file_name='NHL_seed_frame_frequency.csv',
                    mime='text/csv',
                    key='export_seed_frame_frequency_button'
                )