import streamlit as st st.set_page_config(layout="wide") for name in dir(): if not name.startswith('_'): del globals()[name] import pulp import numpy as np import pandas as pd import streamlit as st import gspread import pymongo from itertools import combinations @st.cache_resource def init_conn(): uri = st.secrets['mongo_uri'] client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000) db = client["NHL_Database"] return db db = init_conn() player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}', '4x%': '{:.2%}'} st.markdown(""" """, unsafe_allow_html=True) @st.cache_resource(ttl=200) def player_stat_table(): collection = db["Player_Level_ROO"] cursor = collection.find() player_frame = pd.DataFrame(cursor) player_frame = player_frame[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'Small Field Own%', 'Large Field Own%', 'Cash Own%', 'CPT_Own', 'Site', 'Type', 'Slate', 'player_id', 'timestamp']] collection = db["Player_Lines_ROO"] cursor = collection.find() line_frame = pd.DataFrame(cursor) line_frame = line_frame[['Player', 'SK1', 'SK2', 'SK3', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '50+%', '2x%', '3x%', '4x%', 'Own', 'Site', 'Type', 'Slate']] collection = db["Player_Powerplay_ROO"] cursor = collection.find() pp_frame = pd.DataFrame(cursor) pp_frame = pp_frame[['Player', 'SK1', 'SK2', 'SK3', 'SK4', 'SK5', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '75+%', '2x%', '3x%', '4x%', 'Own', 'Site', 'Type', 'Slate']] timestamp = player_frame['timestamp'].values[0] return player_frame, line_frame, pp_frame, timestamp @st.cache_data def convert_df_to_csv(df): return df.to_csv().encode('utf-8') player_frame, line_frame, pp_frame, timestamp = player_stat_table() t_stamp = f"Last Update: " + str(timestamp) + f" CST" view_var1 = st.radio("View Type", ("Simple", "Advanced"), key='view_var1') tab1, tab2, tab3 = st.tabs(["Player Range of Outcomes", "Line Combo Range of Outcomes", "Power Play Range of Outcomes"]) with tab1: with st.expander("Info and Filters"): with st.container(): st.info("Advanced view includes all stats and thresholds, simple includes just basic columns for ease of use on mobile") st.info(t_stamp) if st.button("Load/Reset Data", key='reset1'): st.cache_data.clear() player_frame, line_frame, pp_frame, timestamp = player_stat_table() t_stamp = f"Last Update: " + str(timestamp) + f" CST" site_var1 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var1') main_var1 = st.radio("Main slate or secondary slate?", ('Main Slate', 'Secondary Slate'), key='main_var1') split_var1 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var1') if split_var1 == 'Specific Games': team_var1 = st.multiselect('Which teams would you like to include in the ROO?', options = player_frame['Team'].unique(), key='team_var1') elif split_var1 == 'Full Slate Run': team_var1 = player_frame.Team.values.tolist() pos_split1 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split1') if pos_split1 == 'Specific Positions': pos_var1 = st.multiselect('What Positions would you like to view?', options = ['C', 'W', 'D', 'G']) elif pos_split1 == 'All Positions': pos_var1 = 'All' sal_var1 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 20000), key='sal_var1') final_Proj = player_frame[player_frame['Site'] == str(site_var1)] final_Proj = final_Proj[final_Proj['Type'] == 'Basic'] final_Proj = final_Proj[final_Proj['Slate'] == main_var1] final_Proj = final_Proj[player_frame['Team'].isin(team_var1)] final_Proj = final_Proj[final_Proj['Salary'] >= sal_var1[0]] final_Proj = final_Proj[final_Proj['Salary'] <= sal_var1[1]] if pos_var1 != 'All': final_Proj = final_Proj[final_Proj['Position'].str.contains('|'.join(pos_var1))] final_Proj = final_Proj.sort_values(by='Median', ascending=False) if pos_var1 == 'All': final_Proj = final_Proj.sort_values(by='Median', ascending=False) if view_var1 == 'Advanced': display_proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'Small Field Own%', 'Large Field Own%', 'Cash Own%', 'CPT_Own']] elif view_var1 == 'Simple': display_proj = final_Proj[['Player', 'Position', 'Salary', 'Median', '3x%', 'Own']] st.dataframe(display_proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True, hide_index=True) st.download_button( label="Export Tables", data=convert_df_to_csv(display_proj), file_name='NHL_player_export.csv', mime='text/csv', ) with tab2: with st.expander("Info and Filters"): with st.container(): st.info("Advanced view includes all stats and thresholds, simple includes just basic columns for ease of use on mobile") st.info(t_stamp) if st.button("Load/Reset Data", key='reset2'): st.cache_data.clear() player_frame, line_frame, pp_frame, timestamp = player_stat_table() t_stamp = f"Last Update: " + str(timestamp) + f" CST" site_var2 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var2') main_var2 = st.radio("Main slate or secondary slate?", ('Main Slate', 'Secondary Slate'), key='main_var2') sal_var2 = st.slider("Is there a certain price range you want to view?", 5000, 40000, (5000, 40000), key='sal_var2') final_line_combos = line_frame[line_frame['Site'] == str(site_var2)] final_line_combos = final_line_combos[final_line_combos['Type'] == 'Basic'] final_line_combos = final_line_combos[final_line_combos['Slate'] == main_var2] final_line_combos = final_line_combos[final_line_combos['Salary'] >= sal_var2[0]] final_line_combos = final_line_combos[final_line_combos['Salary'] <= sal_var2[1]] final_line_combos = final_line_combos.drop_duplicates(subset=['Player']) final_line_combos = final_line_combos.sort_values(by='Median', ascending=False) if view_var1 == 'Advanced': display_proj_lines = final_line_combos[['Player', 'SK1', 'SK2', 'SK3', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '50+%', '2x%', '3x%', '4x%', 'Own']] elif view_var1 == 'Simple': display_proj_lines = final_line_combos[['SK1', 'SK2', 'SK3', 'Salary', 'Median', '3x%', 'Own']] st.dataframe(display_proj_lines.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True, hide_index=True) st.download_button( label="Export Tables", data=convert_df_to_csv(display_proj_lines), file_name='NHL_linecombos_export.csv', mime='text/csv', ) with tab3: with st.expander("Info and Filters"): with st.container(): st.info("Advanced view includes all stats and thresholds, simple includes just basic columns for ease of use on mobile") st.info(t_stamp) if st.button("Load/Reset Data", key='reset3'): st.cache_data.clear() player_frame, line_frame, pp_frame, timestamp = player_stat_table() t_stamp = f"Last Update: " + str(timestamp) + f" CST" site_var3 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var3') main_var3 = st.radio("Main slate or secondary slate?", ('Main Slate', 'Secondary Slate'), key='main_var3') sal_var3 = st.slider("Is there a certain price range you want to view?", 5000, 40000, (5000, 40000), key='sal_var3') final_pp_combos = pp_frame[pp_frame['Site'] == str(site_var3)] final_pp_combos = final_pp_combos[final_pp_combos['Type'] == 'Basic'] final_pp_combos = final_pp_combos[final_pp_combos['Slate'] == main_var3] final_pp_combos = final_pp_combos[final_pp_combos['Salary'] >= sal_var3[0]] final_pp_combos = final_pp_combos[final_pp_combos['Salary'] <= sal_var3[1]] final_pp_combos = final_pp_combos.drop_duplicates(subset=['Player']) final_pp_combos = final_pp_combos.sort_values(by='Median', ascending=False) if view_var1 == 'Advanced': display_proj_pp = final_pp_combos[['Player', 'SK1', 'SK2', 'SK3', 'SK4', 'SK5', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '75+%', '2x%', '3x%', '4x%', 'Own']] elif view_var1 == 'Simple': display_proj_pp = final_pp_combos[['SK1', 'SK2', 'SK3', 'SK4', 'SK5', 'Salary', 'Median', '3x%', 'Own']] st.dataframe(display_proj_pp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True, hide_index=True) st.download_button( label="Export Tables", data=convert_df_to_csv(display_proj_pp), file_name='NHL_powerplay_export.csv', mime='text/csv', )