File size: 14,032 Bytes
ede29cb 5982a2e ede29cb c2b829f ede29cb 8e2d3da ede29cb c2b829f 5982a2e ede29cb 5982a2e ede29cb 5982a2e ede29cb 5982a2e ede29cb 5982a2e ede29cb 5982a2e ede29cb 5982a2e 8e2d3da c2b829f 5982a2e c2b829f 5982a2e c2b829f 8e2d3da c2b829f 5982a2e c2b829f 5982a2e c2b829f 5982a2e ede29cb a3047a6 5982a2e a3047a6 5982a2e a3047a6 5982a2e c2b829f a3047a6 5982a2e a3047a6 5982a2e a3047a6 5982a2e a3047a6 5982a2e a3047a6 5982a2e a3047a6 c2b829f 5982a2e a3047a6 c2b829f 5982a2e a3047a6 5982a2e c2b829f a3047a6 c2b829f 5982a2e 8e2d3da c2b829f 5982a2e ede29cb 5982a2e c2b829f 5982a2e 8e2d3da ede29cb c2b829f 5982a2e c2b829f 5982a2e 6da2e2e c2b829f 5982a2e c2b829f 5982a2e c2b829f 5982a2e c2b829f 5982a2e c2b829f 5982a2e c2b829f 5982a2e c2b829f 5982a2e c2b829f a3047a6 5982a2e a3047a6 c2b829f 5982a2e a3047a6 5982a2e a3047a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import os
import re
import logging
import requests
import PyPDF2
import numpy as np
import pandas as pd
from io import BytesIO
from typing import List, Dict, Tuple, Optional
from urllib.parse import urlparse, urljoin
from concurrent.futures import ThreadPoolExecutor, as_completed
from bs4 import BeautifulSoup
from pathlib import Path
from datetime import datetime
from sklearn.feature_extraction.text import TfidfVectorizer
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
from transformers import pipeline
from sentence_transformers import SentenceTransformer, util
import torch
import spacy
import matplotlib.pyplot as plt
from utils import sanitize_filename
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Términos prohibidos (ejemplo)
PROHIBITED_TERMS = [
"gratis", "garantizado", "rentabilidad asegurada", "sin compromiso",
"resultados inmediatos", "cero riesgo", "sin letra pequeña"
]
class SEOSpaceAnalyzer:
def __init__(self, max_urls: int = 20, max_workers: int = 4):
self.max_urls = max_urls
self.max_workers = max_workers
self.session = self._configure_session()
self.models = self._load_models()
self.base_dir = Path("content_storage")
self.base_dir.mkdir(parents=True, exist_ok=True)
self.current_analysis: Dict = {}
def _configure_session(self):
session = requests.Session()
retry = Retry(total=3, backoff_factor=1,
status_forcelist=[500, 502, 503, 504],
allowed_methods=["GET"])
session.mount("http://", HTTPAdapter(max_retries=retry))
session.mount("https://", HTTPAdapter(max_retries=retry))
session.headers.update({
"User-Agent": "SEOAnalyzer/1.0",
"Accept-Language": "es-ES,es;q=0.9"
})
return session
def _load_models(self):
device = 0 if torch.cuda.is_available() else -1
return {
"spacy": spacy.load("es_core_news_lg"),
"summarizer": pipeline("summarization", model="facebook/bart-large-cnn", device=device),
"ner": pipeline("ner", model="dslim/bert-base-NER", aggregation_strategy="simple", device=device),
"semantic": SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2"),
"zeroshot": pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
}
def analyze_sitemap(
self,
sitemap_url: str,
progress_callback: Optional[callable] = None,
status_callback: Optional[callable] = None
) -> Tuple:
urls = self._parse_sitemap(sitemap_url)
if not urls:
return {"error": "No se pudieron extraer URLs"}, [], {}, {}, {}, {}, {}
results = []
batch_size = 5
num_urls = min(len(urls), self.max_urls)
total_batches = (num_urls + batch_size - 1) // batch_size
for batch_index in range(total_batches):
start = batch_index * batch_size
batch_urls = urls[start:start+batch_size]
if status_callback:
status_callback(f"Procesando batch {batch_index+1}/{total_batches}: {batch_urls}")
with ThreadPoolExecutor(max_workers=len(batch_urls)) as executor:
futures = {executor.submit(self._process_url, url): url for url in batch_urls}
for future in as_completed(futures):
try:
results.append(future.result())
except Exception as e:
results.append({"url": futures[future], "status": "error", "error": str(e)})
if progress_callback:
progress_callback(batch_index+1, total_batches)
# Aplicar procesos de NLP a los resultados
summaries, entities = self._apply_nlp(results)
similarities = self._compute_similarity(results)
flags = self._flag_prohibited_terms(results)
topics = self._classify_topics(results)
seo_tags = self._generate_seo_tags(results, summaries, topics, flags)
self.current_analysis = {
"stats": self._calculate_stats(results),
"content_analysis": self._analyze_content(results),
"links": self._analyze_links(results),
"recommendations": self._generate_recommendations(results),
"details": results,
"summaries": summaries,
"entities": entities,
"similarities": similarities,
"flags": flags,
"topics": topics,
"seo_tags": seo_tags,
"timestamp": datetime.now().isoformat()
}
a = self.current_analysis
# Retornamos 7 outputs (sin summaries, que no se muestran en la UI)
return (
a["stats"], a["recommendations"], a["content_analysis"],
a["links"], a["details"], a["similarities"],
a["seo_tags"]
)
def _process_url(self, url: str) -> Dict:
try:
response = self.session.get(url, timeout=10)
content_type = response.headers.get("Content-Type", "")
if "application/pdf" in content_type:
return self._process_pdf(url, response.content)
return self._process_html(url, response.text)
except Exception as e:
return {"url": url, "status": "error", "error": str(e)}
def _process_html(self, url: str, html: str) -> Dict:
soup = BeautifulSoup(html, "html.parser")
text = re.sub(r"\s+", " ", soup.get_text())
return {
"url": url,
"type": "html",
"status": "success",
"content": text,
"word_count": len(text.split()),
"metadata": self._extract_metadata(soup),
"links": self._extract_links(soup, url)
}
def _process_pdf(self, url: str, content: bytes) -> Dict:
try:
reader = PyPDF2.PdfReader(BytesIO(content))
text = "".join(p.extract_text() or "" for p in reader.pages)
return {
"url": url,
"type": "pdf",
"status": "success",
"content": text,
"word_count": len(text.split()),
"page_count": len(reader.pages)
}
except Exception as e:
return {"url": url, "status": "error", "error": str(e)}
def _extract_metadata(self, soup: BeautifulSoup) -> Dict:
meta = {"title": "", "description": ""}
if soup.title:
meta["title"] = soup.title.string.strip()
for tag in soup.find_all("meta"):
if tag.get("name") == "description":
meta["description"] = tag.get("content", "")
return meta
def _extract_links(self, soup: BeautifulSoup, base_url: str) -> List[Dict]:
links = []
base_domain = urlparse(base_url).netloc
for tag in soup.find_all("a", href=True):
href = tag["href"]
full_url = urljoin(base_url, href)
netloc = urlparse(full_url).netloc
links.append({
"url": full_url,
"type": "internal" if netloc == base_domain else "external",
"anchor": tag.get_text(strip=True)
})
return links
def _parse_sitemap(self, sitemap_url: str) -> List[str]:
try:
r = self.session.get(sitemap_url)
soup = BeautifulSoup(r.text, "lxml-xml")
return [loc.text for loc in soup.find_all("loc")]
except Exception as e:
logger.error(f"Error al parsear sitemap {sitemap_url}: {e}")
return []
def _save_content(self, url: str, content: bytes) -> None:
try:
parsed = urlparse(url)
domain_dir = self.base_dir / parsed.netloc
path = parsed.path.lstrip("/")
if not path or path.endswith("/"):
path = os.path.join(path, "index.html")
safe_path = sanitize_filename(path)
save_path = domain_dir / safe_path
save_path.parent.mkdir(parents=True, exist_ok=True)
new_hash = hash(content)
if save_path.exists():
with open(save_path, "rb") as f:
if hash(f.read()) == new_hash:
logger.debug(f"El contenido de {url} ya está guardado.")
return
with open(save_path, "wb") as f:
f.write(content)
logger.info(f"Guardado contenido en: {save_path}")
except Exception as e:
logger.error(f"Error guardando contenido para {url}: {e}")
def _calculate_stats(self, results: List[Dict]) -> Dict:
success = [r for r in results if r.get("status") == "success"]
return {
"total": len(results),
"success": len(success),
"failed": len(results) - len(success),
"avg_words": round(np.mean([r.get("word_count", 0) for r in success]) if success else 0, 1)
}
def _analyze_content(self, results: List[Dict]) -> Dict:
texts = [r["content"] for r in results if r.get("status") == "success" and r.get("content")]
if not texts:
return {}
tfidf = TfidfVectorizer(max_features=20, stop_words=list(self.models["spacy"].Defaults.stop_words))
tfidf.fit(texts)
top = tfidf.get_feature_names_out().tolist()
return {"top_keywords": top, "samples": texts[:3]}
def _analyze_links(self, results: List[Dict]) -> Dict:
all_links = []
for r in results:
all_links.extend(r.get("links", []))
if not all_links:
return {}
df = pd.DataFrame(all_links)
return {
"internal_links": df[df["type"] == "internal"]["url"].value_counts().head(10).to_dict(),
"external_links": df[df["type"] == "external"]["url"].value_counts().head(10).to_dict()
}
def _apply_nlp(self, results: List[Dict]) -> Tuple[Dict, Dict]:
summaries, entities = {}, {}
for r in results:
if r.get("status") != "success" or not r.get("content"):
continue
text = r["content"][:1024]
try:
summaries[r["url"]] = self.models["summarizer"](text, max_length=100, min_length=30)[0]["summary_text"]
ents = self.models["ner"](text)
entities[r["url"]] = list({e["word"] for e in ents if e["score"] > 0.8})
except Exception as e:
continue
return summaries, entities
def _compute_similarity(self, results: List[Dict]) -> Dict[str, List[Dict]]:
docs = [(r["url"], r["content"]) for r in results if r.get("status") == "success" and r.get("content")]
if len(docs) < 2:
return {}
urls, texts = zip(*docs)
emb = self.models["semantic"].encode(texts, convert_to_tensor=True)
sim = util.pytorch_cos_sim(emb, emb)
return {
urls[i]: [{"url": urls[j], "score": float(sim[i][j])}
for j in np.argsort(-sim[i]) if i != j][:3]
for i in range(len(urls))
}
def _flag_prohibited_terms(self, results: List[Dict]) -> Dict[str, List[str]]:
flags = {}
for r in results:
found = [term for term in PROHIBITED_TERMS if term in r.get("content", "").lower()]
if found:
flags[r["url"]] = found
return flags
def _classify_topics(self, results: List[Dict]) -> Dict[str, List[str]]:
labels = [
"hipotecas", "préstamos", "cuentas", "tarjetas",
"seguros", "inversión", "educación financiera"
]
topics = {}
for r in results:
if r.get("status") != "success":
continue
try:
res = self.models["zeroshot"](r["content"][:1000], candidate_labels=labels, multi_label=True)
topics[r["url"]] = [l for l, s in zip(res["labels"], res["scores"]) if s > 0.5]
except Exception as e:
continue
return topics
def _generate_seo_tags(self, results: List[Dict], summaries: Dict, topics: Dict, flags: Dict) -> Dict[str, Dict]:
seo_tags = {}
for r in results:
url = r["url"]
base = summaries.get(url, r.get("content", "")[:300])
topic = topics.get(url, ["contenido"])[0] if topics.get(url) else "contenido"
try:
prompt = f"Genera un título SEO formal y una meta descripción para contenido sobre {topic}: {base}"
output = self.models["summarizer"](prompt, max_length=60, min_length=20)[0]["summary_text"]
title, desc = output.split(".")[0], output
except Exception as e:
title, desc = "", ""
seo_tags[url] = {
"title": title,
"meta_description": desc,
"flags": flags.get(url, [])
}
return seo_tags
def _generate_recommendations(self, results: List[Dict]) -> List[str]:
recs = []
if any(r.get("word_count", 0) < 300 for r in results):
recs.append("✍️ Algunos contenidos son demasiado breves (<300 palabras)")
if any("gratis" in r.get("content", "").lower() for r in results):
recs.append("⚠️ Detectado uso de lenguaje no permitido")
return recs or ["✅ Todo parece correcto"]
def plot_internal_links(self, links: Dict) -> any:
if not links or not links.get("internal_links"):
fig, ax = plt.subplots()
ax.text(0.5, 0.5, "No hay enlaces internos", ha="center")
return fig
top = links["internal_links"]
fig, ax = plt.subplots()
ax.barh(list(top.keys()), list(top.values()))
ax.set_title("Top Enlaces Internos")
plt.tight_layout()
return fig
|