Update seo_analyzer.py
Browse files- seo_analyzer.py +211 -285
seo_analyzer.py
CHANGED
@@ -1,13 +1,12 @@
|
|
1 |
import os
|
2 |
-
import logging
|
3 |
import re
|
|
|
4 |
import requests
|
5 |
-
import hashlib
|
6 |
import PyPDF2
|
7 |
import numpy as np
|
8 |
import pandas as pd
|
9 |
from io import BytesIO
|
10 |
-
from typing import List, Dict,
|
11 |
from urllib.parse import urlparse, urljoin
|
12 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
13 |
from bs4 import BeautifulSoup
|
@@ -21,347 +20,274 @@ from sentence_transformers import SentenceTransformer, util
|
|
21 |
import torch
|
22 |
import spacy
|
23 |
import matplotlib.pyplot as plt
|
24 |
-
|
25 |
from utils import sanitize_filename
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
|
|
|
|
|
33 |
|
34 |
class SEOSpaceAnalyzer:
|
35 |
-
def __init__(self, max_urls: int = 20, max_workers: int = 4)
|
36 |
self.max_urls = max_urls
|
37 |
self.max_workers = max_workers
|
38 |
self.session = self._configure_session()
|
39 |
self.models = self._load_models()
|
40 |
self.base_dir = Path("content_storage")
|
41 |
self.base_dir.mkdir(parents=True, exist_ok=True)
|
42 |
-
self.current_analysis: Dict
|
43 |
-
|
44 |
-
def _load_models(self) -> Dict[str, Any]:
|
45 |
-
try:
|
46 |
-
device = 0 if torch.cuda.is_available() else -1
|
47 |
-
logger.info("Cargando modelos NLP...")
|
48 |
-
models = {
|
49 |
-
'summarizer': pipeline("summarization", model="facebook/bart-large-cnn", device=device),
|
50 |
-
'ner': pipeline("ner", model="dslim/bert-base-NER", aggregation_strategy="simple", device=device),
|
51 |
-
'semantic': SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2'),
|
52 |
-
'spacy': spacy.load("es_core_news_lg")
|
53 |
-
}
|
54 |
-
logger.info("Modelos cargados correctamente.")
|
55 |
-
return models
|
56 |
-
except Exception as e:
|
57 |
-
logger.error(f"Error cargando modelos: {e}")
|
58 |
-
raise
|
59 |
|
60 |
-
def _configure_session(self)
|
61 |
session = requests.Session()
|
62 |
-
retry = Retry(
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
)
|
68 |
-
adapter = HTTPAdapter(max_retries=retry)
|
69 |
-
session.mount('http://', adapter)
|
70 |
-
session.mount('https://', adapter)
|
71 |
session.headers.update({
|
72 |
-
|
73 |
-
|
74 |
})
|
75 |
return session
|
76 |
|
77 |
-
def
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
url = futures[future]
|
88 |
-
try:
|
89 |
-
res = future.result()
|
90 |
-
results.append(res)
|
91 |
-
logger.info(f"Procesado: {url}")
|
92 |
-
except Exception as e:
|
93 |
-
logger.error(f"Error procesando {url}: {e}")
|
94 |
-
results.append({'url': url, 'status': 'error', 'error': str(e)})
|
95 |
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
def _process_url(self, url: str) -> Dict:
|
117 |
try:
|
118 |
-
response = self.session.get(url, timeout=
|
119 |
-
response.
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
result.update(self._process_pdf(response.content))
|
124 |
-
elif 'text/html' in content_type:
|
125 |
-
result.update(self._process_html(response.text, url))
|
126 |
-
else:
|
127 |
-
result.update({'type': 'unknown', 'content': '', 'word_count': 0})
|
128 |
-
self._save_content(url, response.content)
|
129 |
-
return result
|
130 |
-
except requests.exceptions.Timeout as e:
|
131 |
-
return {'url': url, 'status': 'error', 'error': "Timeout"}
|
132 |
-
except requests.exceptions.HTTPError as e:
|
133 |
-
return {'url': url, 'status': 'error', 'error': "HTTP Error"}
|
134 |
except Exception as e:
|
135 |
-
return {
|
136 |
|
137 |
-
def _process_html(self,
|
138 |
-
soup = BeautifulSoup(html,
|
139 |
-
|
140 |
return {
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
146 |
}
|
147 |
|
148 |
-
def _process_pdf(self, content: bytes) -> Dict:
|
149 |
try:
|
150 |
-
|
151 |
-
|
152 |
-
reader = PyPDF2.PdfReader(pdf_file)
|
153 |
-
for page in reader.pages:
|
154 |
-
extracted = page.extract_text()
|
155 |
-
text += extracted if extracted else ""
|
156 |
-
clean_text = self._clean_text(text)
|
157 |
return {
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
|
|
|
|
162 |
}
|
163 |
except Exception as e:
|
164 |
-
return {
|
165 |
-
|
166 |
-
def _clean_text(self, text: str) -> str:
|
167 |
-
if not text:
|
168 |
-
return ""
|
169 |
-
text = re.sub(r'\s+', ' ', text)
|
170 |
-
return re.sub(r'[^\w\sáéíóúñÁÉÍÓÚÑ]', ' ', text).strip()
|
171 |
|
172 |
-
def _extract_metadata(self, soup
|
173 |
-
|
174 |
-
if soup.title
|
175 |
-
|
176 |
-
for
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
if name == 'description':
|
181 |
-
metadata['description'] = content[:300]
|
182 |
-
elif name == 'keywords':
|
183 |
-
metadata['keywords'] = [kw.strip() for kw in content.split(',') if kw.strip()]
|
184 |
-
elif prop.startswith('og:'):
|
185 |
-
metadata['og'][prop[3:]] = content
|
186 |
-
return metadata
|
187 |
|
188 |
-
def _extract_links(self, soup
|
189 |
-
links
|
190 |
-
|
191 |
-
for tag in soup.find_all(
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
full_url
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
'type': 'internal' if parsed.netloc == base_netloc else 'external',
|
201 |
-
'anchor': self._clean_text(tag.get_text())[:100],
|
202 |
-
'file_type': self._get_file_type(parsed.path)
|
203 |
-
})
|
204 |
-
except:
|
205 |
-
continue
|
206 |
return links
|
207 |
|
208 |
-
def _get_file_type(self, path: str) -> str:
|
209 |
-
ext = Path(path).suffix.lower()
|
210 |
-
return ext[1:] if ext else 'html'
|
211 |
-
|
212 |
def _parse_sitemap(self, sitemap_url: str) -> List[str]:
|
213 |
try:
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
return []
|
218 |
-
soup = BeautifulSoup(response.text, 'lxml-xml')
|
219 |
-
urls: List[str] = []
|
220 |
-
if soup.find('sitemapindex'):
|
221 |
-
for sitemap in soup.find_all('loc'):
|
222 |
-
url = sitemap.text.strip()
|
223 |
-
if url.endswith('.xml'):
|
224 |
-
urls.extend(self._parse_sitemap(url))
|
225 |
-
else:
|
226 |
-
urls = [loc.text.strip() for loc in soup.find_all('loc')]
|
227 |
-
return list({url for url in urls if url.startswith('http')})
|
228 |
except:
|
229 |
return []
|
230 |
|
231 |
-
def
|
232 |
-
|
233 |
-
parsed = urlparse(url)
|
234 |
-
domain_dir = self.base_dir / parsed.netloc
|
235 |
-
raw_path = parsed.path.lstrip('/')
|
236 |
-
if not raw_path or raw_path.endswith('/'):
|
237 |
-
raw_path = os.path.join(raw_path, 'index.html') if raw_path else 'index.html'
|
238 |
-
safe_path = sanitize_filename(raw_path)
|
239 |
-
save_path = domain_dir / safe_path
|
240 |
-
save_path.parent.mkdir(parents=True, exist_ok=True)
|
241 |
-
with open(save_path, 'wb') as f:
|
242 |
-
f.write(content)
|
243 |
-
except:
|
244 |
-
pass
|
245 |
-
|
246 |
-
def _apply_nlp(self, results: List[Dict]) -> Tuple[Dict[str, str], Dict[str, List[str]]]:
|
247 |
-
summaries = {}
|
248 |
-
entities = {}
|
249 |
for r in results:
|
250 |
-
if r.get(
|
251 |
-
|
252 |
-
content = r['content']
|
253 |
-
if len(content.split()) > 300:
|
254 |
-
try:
|
255 |
-
summary = self.models['summarizer'](content[:1024], max_length=100, min_length=30, do_sample=False)[0]['summary_text']
|
256 |
-
summaries[r['url']] = summary
|
257 |
-
except:
|
258 |
-
pass
|
259 |
try:
|
260 |
-
|
261 |
-
|
|
|
262 |
except:
|
263 |
-
|
264 |
return summaries, entities
|
265 |
|
266 |
-
def
|
267 |
-
|
268 |
-
if len(
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
for i
|
276 |
-
|
277 |
-
top_indices = sorted(range(len(scores)), key=lambda j: scores[j], reverse=True)
|
278 |
-
top_similar = [
|
279 |
-
{"url": urls[j], "score": float(scores[j])}
|
280 |
-
for j in top_indices if j != i and float(scores[j]) > 0.5
|
281 |
-
][:3]
|
282 |
-
similarity_dict[url] = top_similar
|
283 |
-
return similarity_dict
|
284 |
-
except:
|
285 |
-
return {}
|
286 |
|
287 |
-
def
|
288 |
-
|
289 |
-
|
290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
return {
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
'avg_word_count': avg_word_count,
|
297 |
-
'failed_urls': [r['url'] for r in results if r.get('status') != 'success']
|
298 |
}
|
299 |
|
300 |
-
def _analyze_content(self, results
|
301 |
-
|
302 |
-
texts = [r['content'] for r in successful if len(r['content'].split()) > 10]
|
303 |
if not texts:
|
304 |
-
return {
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
feature_names = vectorizer.get_feature_names_out()
|
310 |
-
sorted_indices = np.argsort(np.asarray(tfidf.sum(axis=0)).ravel())[-10:]
|
311 |
-
top_keywords = feature_names[sorted_indices][::-1].tolist()
|
312 |
-
except:
|
313 |
-
top_keywords = []
|
314 |
-
samples = [{'url': r['url'], 'sample': r['content'][:500] + '...' if len(r['content']) > 500 else r['content']} for r in successful[:3]]
|
315 |
-
return {'top_keywords': top_keywords, 'content_samples': samples}
|
316 |
|
317 |
-
def _analyze_links(self, results
|
318 |
all_links = []
|
319 |
-
for
|
320 |
-
|
321 |
-
all_links.extend(result['links'])
|
322 |
if not all_links:
|
323 |
-
return {
|
324 |
df = pd.DataFrame(all_links)
|
325 |
return {
|
326 |
-
|
327 |
-
|
328 |
-
'common_anchors': df['anchor'].value_counts().head(10).to_dict(),
|
329 |
-
'file_types': df['file_type'].value_counts().to_dict()
|
330 |
}
|
331 |
|
332 |
-
def
|
333 |
-
successful = [r for r in results if r.get('status') == 'success']
|
334 |
-
if not successful:
|
335 |
-
return ["No se pudo analizar ningún contenido exitosamente"]
|
336 |
recs = []
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
recs.append(f"📌 Añadir meta descripciones a {short_descriptions} páginas")
|
343 |
-
short_content = sum(1 for r in successful if r.get('word_count', 0) < 300)
|
344 |
-
if short_content:
|
345 |
-
recs.append(f"📝 Ampliar contenido en {short_content} páginas (menos de 300 palabras)")
|
346 |
-
all_links = [link for r in results for link in r.get('links', [])]
|
347 |
-
if all_links:
|
348 |
-
df_links = pd.DataFrame(all_links)
|
349 |
-
internal_links = df_links[df_links['type'] == 'internal']
|
350 |
-
if len(internal_links) > 100:
|
351 |
-
recs.append(f"🔗 Optimizar estructura de enlaces internos ({len(internal_links)} enlaces)")
|
352 |
-
return recs if recs else ["✅ No se detectaron problemas críticos de SEO"]
|
353 |
|
354 |
-
def plot_internal_links(self,
|
355 |
-
|
|
|
|
|
|
|
|
|
356 |
fig, ax = plt.subplots()
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
else:
|
361 |
-
names = list(internal_links.keys())
|
362 |
-
counts = list(internal_links.values())
|
363 |
-
ax.barh(names, counts)
|
364 |
-
ax.set_xlabel("Cantidad de enlaces")
|
365 |
-
ax.set_title("Top 20 Enlaces Internos")
|
366 |
-
plt.tight_layout()
|
367 |
return fig
|
|
|
1 |
import os
|
|
|
2 |
import re
|
3 |
+
import logging
|
4 |
import requests
|
|
|
5 |
import PyPDF2
|
6 |
import numpy as np
|
7 |
import pandas as pd
|
8 |
from io import BytesIO
|
9 |
+
from typing import List, Dict, Tuple
|
10 |
from urllib.parse import urlparse, urljoin
|
11 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
12 |
from bs4 import BeautifulSoup
|
|
|
20 |
import torch
|
21 |
import spacy
|
22 |
import matplotlib.pyplot as plt
|
|
|
23 |
from utils import sanitize_filename
|
24 |
|
25 |
+
# Palabras no permitidas en SEO financiero/bancario
|
26 |
+
PROHIBITED_TERMS = [
|
27 |
+
"gratis", "garantizado", "rentabilidad asegurada", "sin compromiso",
|
28 |
+
"resultados inmediatos", "cero riesgo", "sin letra pequeña"
|
29 |
+
]
|
30 |
|
31 |
+
logging.basicConfig(level=logging.INFO)
|
32 |
+
logger = logging.getLogger(__name__)
|
33 |
|
34 |
class SEOSpaceAnalyzer:
|
35 |
+
def __init__(self, max_urls: int = 20, max_workers: int = 4):
|
36 |
self.max_urls = max_urls
|
37 |
self.max_workers = max_workers
|
38 |
self.session = self._configure_session()
|
39 |
self.models = self._load_models()
|
40 |
self.base_dir = Path("content_storage")
|
41 |
self.base_dir.mkdir(parents=True, exist_ok=True)
|
42 |
+
self.current_analysis: Dict = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
def _configure_session(self):
|
45 |
session = requests.Session()
|
46 |
+
retry = Retry(total=3, backoff_factor=1,
|
47 |
+
status_forcelist=[500, 502, 503, 504],
|
48 |
+
allowed_methods=["GET"])
|
49 |
+
session.mount("http://", HTTPAdapter(max_retries=retry))
|
50 |
+
session.mount("https://", HTTPAdapter(max_retries=retry))
|
|
|
|
|
|
|
|
|
51 |
session.headers.update({
|
52 |
+
"User-Agent": "SEOAnalyzer/1.0",
|
53 |
+
"Accept-Language": "es-ES,es;q=0.9"
|
54 |
})
|
55 |
return session
|
56 |
|
57 |
+
def _load_models(self):
|
58 |
+
device = 0 if torch.cuda.is_available() else -1
|
59 |
+
return {
|
60 |
+
"spacy": spacy.load("es_core_news_lg"),
|
61 |
+
"summarizer": pipeline("summarization", model="facebook/bart-large-cnn", device=device),
|
62 |
+
"ner": pipeline("ner", model="dslim/bert-base-NER", aggregation_strategy="simple", device=device),
|
63 |
+
"semantic": SentenceTransformer("paraphrase-multilingual-MiniLM-L12-v2"),
|
64 |
+
"zeroshot": pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
65 |
+
}
|
66 |
|
67 |
+
def analyze_sitemap(self, sitemap_url: str) -> Tuple:
|
68 |
+
urls = self._parse_sitemap(sitemap_url)
|
69 |
+
if not urls:
|
70 |
+
return {"error": "No se pudieron extraer URLs"}, [], {}, {}, [], {}, {}, {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
results = []
|
73 |
+
with ThreadPoolExecutor(max_workers=self.max_workers) as executor:
|
74 |
+
futures = {executor.submit(self._process_url, url): url for url in urls[:self.max_urls]}
|
75 |
+
for future in as_completed(futures):
|
76 |
+
try:
|
77 |
+
results.append(future.result())
|
78 |
+
except Exception as e:
|
79 |
+
results.append({"url": futures[future], "status": "error", "error": str(e)})
|
80 |
|
81 |
+
summaries, entities = self._apply_nlp(results)
|
82 |
+
similarities = self._compute_similarity(results)
|
83 |
+
flags = self._flag_prohibited_terms(results)
|
84 |
+
topics = self._classify_topics(results)
|
85 |
+
seo_tags = self._generate_seo_tags(results, summaries, topics, flags)
|
86 |
+
|
87 |
+
self.current_analysis = {
|
88 |
+
"stats": self._calculate_stats(results),
|
89 |
+
"content_analysis": self._analyze_content(results),
|
90 |
+
"links": self._analyze_links(results),
|
91 |
+
"recommendations": self._generate_recommendations(results),
|
92 |
+
"details": results,
|
93 |
+
"summaries": summaries,
|
94 |
+
"entities": entities,
|
95 |
+
"similarities": similarities,
|
96 |
+
"flags": flags,
|
97 |
+
"topics": topics,
|
98 |
+
"seo_tags": seo_tags,
|
99 |
+
"timestamp": datetime.now().isoformat()
|
100 |
+
}
|
101 |
+
|
102 |
+
a = self.current_analysis
|
103 |
+
return (
|
104 |
+
a["stats"], a["recommendations"], a["content_analysis"],
|
105 |
+
a["links"], a["details"], a["summaries"],
|
106 |
+
a["similarities"], a["seo_tags"]
|
107 |
+
)
|
108 |
|
109 |
def _process_url(self, url: str) -> Dict:
|
110 |
try:
|
111 |
+
response = self.session.get(url, timeout=10)
|
112 |
+
content_type = response.headers.get("Content-Type", "")
|
113 |
+
if "application/pdf" in content_type:
|
114 |
+
return self._process_pdf(url, response.content)
|
115 |
+
return self._process_html(url, response.text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
except Exception as e:
|
117 |
+
return {"url": url, "status": "error", "error": str(e)}
|
118 |
|
119 |
+
def _process_html(self, url: str, html: str) -> Dict:
|
120 |
+
soup = BeautifulSoup(html, "html.parser")
|
121 |
+
text = re.sub(r"\\s+", " ", soup.get_text())
|
122 |
return {
|
123 |
+
"url": url,
|
124 |
+
"type": "html",
|
125 |
+
"status": "success",
|
126 |
+
"content": text,
|
127 |
+
"word_count": len(text.split()),
|
128 |
+
"metadata": self._extract_metadata(soup),
|
129 |
+
"links": self._extract_links(soup, url)
|
130 |
}
|
131 |
|
132 |
+
def _process_pdf(self, url: str, content: bytes) -> Dict:
|
133 |
try:
|
134 |
+
reader = PyPDF2.PdfReader(BytesIO(content))
|
135 |
+
text = "".join(p.extract_text() or "" for p in reader.pages)
|
|
|
|
|
|
|
|
|
|
|
136 |
return {
|
137 |
+
"url": url,
|
138 |
+
"type": "pdf",
|
139 |
+
"status": "success",
|
140 |
+
"content": text,
|
141 |
+
"word_count": len(text.split()),
|
142 |
+
"page_count": len(reader.pages)
|
143 |
}
|
144 |
except Exception as e:
|
145 |
+
return {"url": url, "status": "error", "error": str(e)}
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
+
def _extract_metadata(self, soup) -> Dict:
|
148 |
+
meta = {"title": "", "description": ""}
|
149 |
+
if soup.title:
|
150 |
+
meta["title"] = soup.title.string.strip()
|
151 |
+
for tag in soup.find_all("meta"):
|
152 |
+
if tag.get("name") == "description":
|
153 |
+
meta["description"] = tag.get("content", "")
|
154 |
+
return meta
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
+
def _extract_links(self, soup, base_url) -> List[Dict]:
|
157 |
+
links = []
|
158 |
+
base_domain = urlparse(base_url).netloc
|
159 |
+
for tag in soup.find_all("a", href=True):
|
160 |
+
href = tag["href"]
|
161 |
+
full_url = urljoin(base_url, href)
|
162 |
+
netloc = urlparse(full_url).netloc
|
163 |
+
links.append({
|
164 |
+
"url": full_url,
|
165 |
+
"type": "internal" if netloc == base_domain else "external",
|
166 |
+
"anchor": tag.get_text(strip=True)
|
167 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
return links
|
169 |
|
|
|
|
|
|
|
|
|
170 |
def _parse_sitemap(self, sitemap_url: str) -> List[str]:
|
171 |
try:
|
172 |
+
r = self.session.get(sitemap_url)
|
173 |
+
soup = BeautifulSoup(r.text, "lxml-xml")
|
174 |
+
return [loc.text for loc in soup.find_all("loc")]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
except:
|
176 |
return []
|
177 |
|
178 |
+
def _apply_nlp(self, results) -> Tuple[Dict, Dict]:
|
179 |
+
summaries, entities = {}, {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
for r in results:
|
181 |
+
if r.get("status") != "success" or not r.get("content"): continue
|
182 |
+
text = r["content"][:1024]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
try:
|
184 |
+
summaries[r["url"]] = self.models["summarizer"](text, max_length=100, min_length=30)[0]["summary_text"]
|
185 |
+
ents = self.models["ner"](text)
|
186 |
+
entities[r["url"]] = list({e["word"] for e in ents if e["score"] > 0.8})
|
187 |
except:
|
188 |
+
continue
|
189 |
return summaries, entities
|
190 |
|
191 |
+
def _compute_similarity(self, results) -> Dict[str, List[Dict]]:
|
192 |
+
docs = [(r["url"], r["content"]) for r in results if r.get("status") == "success" and r.get("content")]
|
193 |
+
if len(docs) < 2: return {}
|
194 |
+
urls, texts = zip(*docs)
|
195 |
+
emb = self.models["semantic"].encode(texts, convert_to_tensor=True)
|
196 |
+
sim = util.pytorch_cos_sim(emb, emb)
|
197 |
+
return {
|
198 |
+
urls[i]: [{"url": urls[j], "score": float(sim[i][j])}
|
199 |
+
for j in np.argsort(-sim[i]) if i != j][:3]
|
200 |
+
for i in range(len(urls))
|
201 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
+
def _flag_prohibited_terms(self, results) -> Dict[str, List[str]]:
|
204 |
+
flags = {}
|
205 |
+
for r in results:
|
206 |
+
found = [term for term in PROHIBITED_TERMS if term in r.get("content", "").lower()]
|
207 |
+
if found:
|
208 |
+
flags[r["url"]] = found
|
209 |
+
return flags
|
210 |
+
|
211 |
+
def _classify_topics(self, results) -> Dict[str, List[str]]:
|
212 |
+
labels = [
|
213 |
+
"hipotecas", "préstamos", "cuentas", "tarjetas",
|
214 |
+
"seguros", "inversión", "educación financiera"
|
215 |
+
]
|
216 |
+
topics = {}
|
217 |
+
for r in results:
|
218 |
+
if r.get("status") != "success": continue
|
219 |
+
try:
|
220 |
+
res = self.models["zeroshot"](r["content"][:1000], candidate_labels=labels, multi_label=True)
|
221 |
+
topics[r["url"]] = [l for l, s in zip(res["labels"], res["scores"]) if s > 0.5]
|
222 |
+
except:
|
223 |
+
continue
|
224 |
+
return topics
|
225 |
+
|
226 |
+
def _generate_seo_tags(self, results, summaries, topics, flags) -> Dict[str, Dict]:
|
227 |
+
seo_tags = {}
|
228 |
+
for r in results:
|
229 |
+
url = r["url"]
|
230 |
+
base = summaries.get(url, r.get("content", "")[:300])
|
231 |
+
topic = topics.get(url, ["contenido"])[0]
|
232 |
+
try:
|
233 |
+
prompt = f"Genera un título SEO formal y una meta descripción para contenido sobre {topic}: {base}"
|
234 |
+
output = self.models["summarizer"](prompt, max_length=60, min_length=20)[0]["summary_text"]
|
235 |
+
title, desc = output.split(".")[0], output
|
236 |
+
except:
|
237 |
+
title, desc = "", ""
|
238 |
+
seo_tags[url] = {
|
239 |
+
"title": title,
|
240 |
+
"meta_description": desc,
|
241 |
+
"flags": flags.get(url, [])
|
242 |
+
}
|
243 |
+
return seo_tags
|
244 |
+
|
245 |
+
def _calculate_stats(self, results):
|
246 |
+
success = [r for r in results if r.get("status") == "success"]
|
247 |
return {
|
248 |
+
"total": len(results),
|
249 |
+
"success": len(success),
|
250 |
+
"failed": len(results) - len(success),
|
251 |
+
"avg_words": round(np.mean([r.get("word_count", 0) for r in success]), 1)
|
|
|
|
|
252 |
}
|
253 |
|
254 |
+
def _analyze_content(self, results):
|
255 |
+
texts = [r["content"] for r in results if r.get("status") == "success" and r.get("content")]
|
|
|
256 |
if not texts:
|
257 |
+
return {}
|
258 |
+
tfidf = TfidfVectorizer(max_features=20, stop_words=list(self.models["spacy"].Defaults.stop_words))
|
259 |
+
tfidf.fit(texts)
|
260 |
+
top = tfidf.get_feature_names_out().tolist()
|
261 |
+
return {"top_keywords": top, "samples": texts[:3]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
263 |
+
def _analyze_links(self, results):
|
264 |
all_links = []
|
265 |
+
for r in results:
|
266 |
+
all_links.extend(r.get("links", []))
|
|
|
267 |
if not all_links:
|
268 |
+
return {}
|
269 |
df = pd.DataFrame(all_links)
|
270 |
return {
|
271 |
+
"internal_links": df[df["type"] == "internal"]["url"].value_counts().head(10).to_dict(),
|
272 |
+
"external_links": df[df["type"] == "external"]["url"].value_counts().head(10).to_dict()
|
|
|
|
|
273 |
}
|
274 |
|
275 |
+
def _generate_recommendations(self, results):
|
|
|
|
|
|
|
276 |
recs = []
|
277 |
+
if any(r.get("word_count", 0) < 300 for r in results):
|
278 |
+
recs.append("✍️ Algunos contenidos son demasiado breves (<300 palabras)")
|
279 |
+
if any("gratis" in r.get("content", "").lower() for r in results):
|
280 |
+
recs.append("⚠️ Detectado uso de lenguaje no permitido")
|
281 |
+
return recs or ["✅ Todo parece correcto"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
|
283 |
+
def plot_internal_links(self, links: Dict):
|
284 |
+
if not links or not links.get("internal_links"):
|
285 |
+
fig, ax = plt.subplots()
|
286 |
+
ax.text(0.5, 0.5, "No hay enlaces internos", ha="center")
|
287 |
+
return fig
|
288 |
+
top = links["internal_links"]
|
289 |
fig, ax = plt.subplots()
|
290 |
+
ax.barh(list(top.keys()), list(top.values()))
|
291 |
+
ax.set_title("Top Enlaces Internos")
|
292 |
+
plt.tight_layout()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
return fig
|