Create seo_analyzer.py
Browse files- seo_analyzer.py +374 -0
seo_analyzer.py
ADDED
@@ -0,0 +1,374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import logging
|
3 |
+
import re
|
4 |
+
import requests
|
5 |
+
import hashlib
|
6 |
+
import PyPDF2
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
from io import BytesIO
|
10 |
+
from typing import List, Dict, Any, Tuple
|
11 |
+
from urllib.parse import urlparse, urljoin
|
12 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
13 |
+
from bs4 import BeautifulSoup
|
14 |
+
from pathlib import Path
|
15 |
+
from datetime import datetime
|
16 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
17 |
+
from requests.adapters import HTTPAdapter
|
18 |
+
from urllib3.util.retry import Retry
|
19 |
+
from transformers import pipeline
|
20 |
+
from sentence_transformers import SentenceTransformer
|
21 |
+
import torch
|
22 |
+
import subprocess
|
23 |
+
import sys
|
24 |
+
import spacy
|
25 |
+
import matplotlib.pyplot as plt
|
26 |
+
|
27 |
+
from utils import sanitize_filename
|
28 |
+
|
29 |
+
# Configuración de logging
|
30 |
+
logging.basicConfig(
|
31 |
+
level=logging.INFO,
|
32 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
33 |
+
)
|
34 |
+
logger = logging.getLogger(__name__)
|
35 |
+
|
36 |
+
class SEOSpaceAnalyzer:
|
37 |
+
def __init__(self, max_urls: int = 20, max_workers: int = 4) -> None:
|
38 |
+
"""
|
39 |
+
Inicializa la sesión HTTP, carga modelos NLP y prepara el directorio de almacenamiento.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
max_urls: Número máximo de URLs a procesar por análisis.
|
43 |
+
max_workers: Número de hilos para la ejecución concurrente.
|
44 |
+
"""
|
45 |
+
self.max_urls = max_urls
|
46 |
+
self.max_workers = max_workers
|
47 |
+
self.session = self._configure_session()
|
48 |
+
self.models = self._load_models()
|
49 |
+
self.base_dir = Path("content_storage")
|
50 |
+
self.base_dir.mkdir(parents=True, exist_ok=True)
|
51 |
+
self.current_analysis: Dict[str, Any] = {}
|
52 |
+
|
53 |
+
def _load_models(self) -> Dict[str, Any]:
|
54 |
+
"""Carga los modelos NLP de Hugging Face y spaCy."""
|
55 |
+
try:
|
56 |
+
device = 0 if torch.cuda.is_available() else -1
|
57 |
+
logger.info("Cargando modelos NLP...")
|
58 |
+
models = {
|
59 |
+
'summarizer': pipeline("summarization", model="facebook/bart-large-cnn", device=device),
|
60 |
+
'ner': pipeline("ner", model="dslim/bert-base-NER", aggregation_strategy="simple", device=device),
|
61 |
+
'semantic': SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2'),
|
62 |
+
'spacy': spacy.load("es_core_news_lg")
|
63 |
+
}
|
64 |
+
logger.info("Modelos cargados correctamente.")
|
65 |
+
return models
|
66 |
+
except Exception as e:
|
67 |
+
logger.error(f"Error cargando modelos: {e}")
|
68 |
+
raise
|
69 |
+
|
70 |
+
def _configure_session(self) -> requests.Session:
|
71 |
+
"""Configura una sesión HTTP con reintentos y headers personalizados."""
|
72 |
+
session = requests.Session()
|
73 |
+
retry = Retry(
|
74 |
+
total=3,
|
75 |
+
backoff_factor=1,
|
76 |
+
status_forcelist=[500, 502, 503, 504],
|
77 |
+
allowed_methods=['GET', 'HEAD']
|
78 |
+
)
|
79 |
+
adapter = HTTPAdapter(max_retries=retry)
|
80 |
+
session.mount('http://', adapter)
|
81 |
+
session.mount('https://', adapter)
|
82 |
+
session.headers.update({
|
83 |
+
'User-Agent': 'Mozilla/5.0 (compatible; SEOBot/1.0)',
|
84 |
+
'Accept-Language': 'es-ES,es;q=0.9'
|
85 |
+
})
|
86 |
+
return session
|
87 |
+
|
88 |
+
def analyze_sitemap(self, sitemap_url: str) -> Tuple[Dict, List[str], Dict, Dict, List[Dict]]:
|
89 |
+
"""
|
90 |
+
Procesa el sitemap: extrae URLs, analiza cada página individualmente y devuelve datos agregados.
|
91 |
+
|
92 |
+
Args:
|
93 |
+
sitemap_url: URL del sitemap XML.
|
94 |
+
|
95 |
+
Returns:
|
96 |
+
Una tupla con 5 elementos:
|
97 |
+
- Estadísticas generales (dict)
|
98 |
+
- Recomendaciones SEO (lista de strings)
|
99 |
+
- Análisis de contenido agregado (dict)
|
100 |
+
- Análisis de enlaces (dict)
|
101 |
+
- Detalle individual de cada URL procesada (lista de dicts)
|
102 |
+
"""
|
103 |
+
try:
|
104 |
+
urls = self._parse_sitemap(sitemap_url)
|
105 |
+
if not urls:
|
106 |
+
return {"error": "No se pudieron extraer URLs del sitemap"}, [], {}, {}, []
|
107 |
+
results: List[Dict] = []
|
108 |
+
with ThreadPoolExecutor(max_workers=self.max_workers) as executor:
|
109 |
+
futures = {executor.submit(self._process_url, url): url for url in urls[:self.max_urls]}
|
110 |
+
for future in as_completed(futures):
|
111 |
+
url = futures[future]
|
112 |
+
try:
|
113 |
+
res = future.result()
|
114 |
+
results.append(res)
|
115 |
+
logger.info(f"Procesado: {url}")
|
116 |
+
except Exception as e:
|
117 |
+
logger.error(f"Error procesando {url}: {e}")
|
118 |
+
results.append({'url': url, 'status': 'error', 'error': str(e)})
|
119 |
+
|
120 |
+
self.current_analysis = {
|
121 |
+
'stats': self._calculate_stats(results),
|
122 |
+
'content_analysis': self._analyze_content(results),
|
123 |
+
'links': self._analyze_links(results),
|
124 |
+
'recommendations': self._generate_seo_recommendations(results),
|
125 |
+
'details': results,
|
126 |
+
'timestamp': datetime.now().isoformat()
|
127 |
+
}
|
128 |
+
analysis = self.current_analysis
|
129 |
+
return analysis['stats'], analysis['recommendations'], analysis['content_analysis'], analysis['links'], analysis['details']
|
130 |
+
except Exception as e:
|
131 |
+
logger.error(f"Error en análisis: {e}")
|
132 |
+
return {"error": str(e)}, [], {}, {}, []
|
133 |
+
|
134 |
+
def _process_url(self, url: str) -> Dict:
|
135 |
+
"""Procesa una URL individual extrayendo contenido, metadatos y enlaces."""
|
136 |
+
try:
|
137 |
+
response = self.session.get(url, timeout=15)
|
138 |
+
response.raise_for_status()
|
139 |
+
content_type = response.headers.get('Content-Type', '')
|
140 |
+
result: Dict[str, Any] = {'url': url, 'status': 'success'}
|
141 |
+
if 'application/pdf' in content_type:
|
142 |
+
result.update(self._process_pdf(response.content))
|
143 |
+
elif 'text/html' in content_type:
|
144 |
+
result.update(self._process_html(response.text, url))
|
145 |
+
else:
|
146 |
+
result.update({'type': 'unknown', 'content': '', 'word_count': 0})
|
147 |
+
self._save_content(url, response.content)
|
148 |
+
return result
|
149 |
+
except requests.exceptions.RequestException as e:
|
150 |
+
logger.warning(f"Error procesando {url}: {str(e)}")
|
151 |
+
return {'url': url, 'status': 'error', 'error': str(e)}
|
152 |
+
except Exception as e:
|
153 |
+
logger.error(f"Error inesperado en {url}: {str(e)}")
|
154 |
+
return {'url': url, 'status': 'error', 'error': str(e)}
|
155 |
+
|
156 |
+
def _process_html(self, html: str, base_url: str) -> Dict:
|
157 |
+
"""Extrae y limpia el contenido HTML, metadatos y enlaces de la página."""
|
158 |
+
soup = BeautifulSoup(html, 'html.parser')
|
159 |
+
clean_text = self._clean_text(soup.get_text())
|
160 |
+
return {
|
161 |
+
'type': 'html',
|
162 |
+
'content': clean_text,
|
163 |
+
'word_count': len(clean_text.split()),
|
164 |
+
'metadata': self._extract_metadata(soup),
|
165 |
+
'links': self._extract_links(soup, base_url)
|
166 |
+
}
|
167 |
+
|
168 |
+
def _process_pdf(self, content: bytes) -> Dict:
|
169 |
+
"""Extrae texto de un documento PDF y calcula estadísticas básicas."""
|
170 |
+
try:
|
171 |
+
text = ""
|
172 |
+
with BytesIO(content) as pdf_file:
|
173 |
+
reader = PyPDF2.PdfReader(pdf_file)
|
174 |
+
for page in reader.pages:
|
175 |
+
extracted = page.extract_text()
|
176 |
+
text += extracted if extracted else ""
|
177 |
+
clean_text = self._clean_text(text)
|
178 |
+
return {
|
179 |
+
'type': 'pdf',
|
180 |
+
'content': clean_text,
|
181 |
+
'word_count': len(clean_text.split()),
|
182 |
+
'page_count': len(reader.pages)
|
183 |
+
}
|
184 |
+
except PyPDF2.PdfReadError as e:
|
185 |
+
logger.error(f"Error leyendo PDF: {e}")
|
186 |
+
return {'type': 'pdf', 'error': str(e)}
|
187 |
+
|
188 |
+
def _clean_text(self, text: str) -> str:
|
189 |
+
"""Limpia y normaliza el texto removiendo espacios y caracteres especiales."""
|
190 |
+
if not text:
|
191 |
+
return ""
|
192 |
+
text = re.sub(r'\s+', ' ', text)
|
193 |
+
return re.sub(r'[^\w\sáéíóúñÁÉÍÓÚÑ]', ' ', text).strip()
|
194 |
+
|
195 |
+
def _extract_metadata(self, soup: BeautifulSoup) -> Dict:
|
196 |
+
"""Extrae metadatos relevantes (título, descripción, keywords, Open Graph) de la página."""
|
197 |
+
metadata = {'title': '', 'description': '', 'keywords': [], 'og': {}}
|
198 |
+
if soup.title and soup.title.string:
|
199 |
+
metadata['title'] = soup.title.string.strip()[:200]
|
200 |
+
for meta in soup.find_all('meta'):
|
201 |
+
name = meta.get('name', '').lower()
|
202 |
+
prop = meta.get('property', '').lower()
|
203 |
+
content = meta.get('content', '')
|
204 |
+
if name == 'description':
|
205 |
+
metadata['description'] = content[:300]
|
206 |
+
elif name == 'keywords':
|
207 |
+
metadata['keywords'] = [kw.strip() for kw in content.split(',') if kw.strip()]
|
208 |
+
elif prop.startswith('og:'):
|
209 |
+
metadata['og'][prop[3:]] = content
|
210 |
+
return metadata
|
211 |
+
|
212 |
+
def _extract_links(self, soup: BeautifulSoup, base_url: str) -> List[Dict]:
|
213 |
+
"""Extrae enlaces de la página, distinguiendo entre internos y externos."""
|
214 |
+
links: List[Dict] = []
|
215 |
+
base_netloc = urlparse(base_url).netloc
|
216 |
+
for tag in soup.find_all('a', href=True):
|
217 |
+
try:
|
218 |
+
href = tag['href'].strip()
|
219 |
+
if not href or href.startswith('javascript:'):
|
220 |
+
continue
|
221 |
+
full_url = urljoin(base_url, href)
|
222 |
+
parsed = urlparse(full_url)
|
223 |
+
links.append({
|
224 |
+
'url': full_url,
|
225 |
+
'type': 'internal' if parsed.netloc == base_netloc else 'external',
|
226 |
+
'anchor': self._clean_text(tag.get_text())[:100],
|
227 |
+
'file_type': self._get_file_type(parsed.path)
|
228 |
+
})
|
229 |
+
except Exception as e:
|
230 |
+
logger.warning(f"Error procesando enlace {tag.get('href')}: {e}")
|
231 |
+
continue
|
232 |
+
return links
|
233 |
+
|
234 |
+
def _get_file_type(self, path: str) -> str:
|
235 |
+
"""Determina el tipo de archivo según la extensión."""
|
236 |
+
ext = Path(path).suffix.lower()
|
237 |
+
return ext[1:] if ext else 'html'
|
238 |
+
|
239 |
+
def _parse_sitemap(self, sitemap_url: str) -> List[str]:
|
240 |
+
"""Parsea un sitemap XML (y posibles índices de sitemaps) para extraer URLs."""
|
241 |
+
try:
|
242 |
+
response = self.session.get(sitemap_url, timeout=10)
|
243 |
+
response.raise_for_status()
|
244 |
+
if 'xml' not in response.headers.get('Content-Type', ''):
|
245 |
+
logger.warning(f"El sitemap no parece ser XML: {sitemap_url}")
|
246 |
+
return []
|
247 |
+
soup = BeautifulSoup(response.text, 'lxml-xml')
|
248 |
+
urls: List[str] = []
|
249 |
+
if soup.find('sitemapindex'):
|
250 |
+
for sitemap in soup.find_all('loc'):
|
251 |
+
url = sitemap.text.strip()
|
252 |
+
if url.endswith('.xml'):
|
253 |
+
urls.extend(self._parse_sitemap(url))
|
254 |
+
else:
|
255 |
+
urls = [loc.text.strip() for loc in soup.find_all('loc')]
|
256 |
+
filtered_urls = list({url for url in urls if url.startswith('http')})
|
257 |
+
return filtered_urls
|
258 |
+
except Exception as e:
|
259 |
+
logger.error(f"Error al parsear sitemap {sitemap_url}: {e}")
|
260 |
+
return []
|
261 |
+
|
262 |
+
def _save_content(self, url: str, content: bytes) -> None:
|
263 |
+
"""
|
264 |
+
Guarda el contenido descargado en una estructura de directorios organizada por dominio,
|
265 |
+
sanitizando el nombre del archivo y evitando sobrescribir archivos idénticos mediante hash.
|
266 |
+
"""
|
267 |
+
try:
|
268 |
+
parsed = urlparse(url)
|
269 |
+
domain_dir = self.base_dir / parsed.netloc
|
270 |
+
path = parsed.path.lstrip('/')
|
271 |
+
if not path or path.endswith('/'):
|
272 |
+
path = os.path.join(path, 'index.html')
|
273 |
+
safe_path = sanitize_filename(path)
|
274 |
+
save_path = domain_dir / safe_path
|
275 |
+
save_path.parent.mkdir(parents=True, exist_ok=True)
|
276 |
+
new_hash = hashlib.md5(content).hexdigest()
|
277 |
+
if save_path.exists():
|
278 |
+
with open(save_path, 'rb') as f:
|
279 |
+
existing_content = f.read()
|
280 |
+
existing_hash = hashlib.md5(existing_content).hexdigest()
|
281 |
+
if new_hash == existing_hash:
|
282 |
+
logger.debug(f"El contenido de {url} ya está guardado.")
|
283 |
+
return
|
284 |
+
with open(save_path, 'wb') as f:
|
285 |
+
f.write(content)
|
286 |
+
logger.info(f"Guardado contenido en: {save_path}")
|
287 |
+
except Exception as e:
|
288 |
+
logger.error(f"Error guardando contenido para {url}: {e}")
|
289 |
+
|
290 |
+
def _calculate_stats(self, results: List[Dict]) -> Dict:
|
291 |
+
"""Calcula estadísticas generales del análisis."""
|
292 |
+
successful = [r for r in results if r.get('status') == 'success']
|
293 |
+
content_types = [r.get('type', 'unknown') for r in successful]
|
294 |
+
avg_word_count = round(np.mean([r.get('word_count', 0) for r in successful]) if successful else 0, 1)
|
295 |
+
return {
|
296 |
+
'total_urls': len(results),
|
297 |
+
'successful': len(successful),
|
298 |
+
'failed': len(results) - len(successful),
|
299 |
+
'content_types': pd.Series(content_types).value_counts().to_dict(),
|
300 |
+
'avg_word_count': avg_word_count,
|
301 |
+
'failed_urls': [r['url'] for r in results if r.get('status') != 'success']
|
302 |
+
}
|
303 |
+
|
304 |
+
def _analyze_content(self, results: List[Dict]) -> Dict:
|
305 |
+
"""Genera un análisis de contenido agregado usando TF-IDF para extraer las palabras clave principales y muestras."""
|
306 |
+
successful = [r for r in results if r.get('status') == 'success' and r.get('content')]
|
307 |
+
texts = [r['content'] for r in successful if len(r['content'].split()) > 10]
|
308 |
+
if not texts:
|
309 |
+
return {'top_keywords': [], 'content_samples': []}
|
310 |
+
try:
|
311 |
+
stop_words = list(self.models['spacy'].Defaults.stop_words)
|
312 |
+
vectorizer = TfidfVectorizer(stop_words=stop_words, max_features=50, ngram_range=(1, 2))
|
313 |
+
tfidf = vectorizer.fit_transform(texts)
|
314 |
+
feature_names = vectorizer.get_feature_names_out()
|
315 |
+
sorted_indices = np.argsort(np.asarray(tfidf.sum(axis=0)).ravel())[-10:]
|
316 |
+
top_keywords = feature_names[sorted_indices][::-1].tolist()
|
317 |
+
except Exception as e:
|
318 |
+
logger.error(f"Error en análisis TF-IDF: {e}")
|
319 |
+
top_keywords = []
|
320 |
+
samples = [{'url': r['url'], 'sample': (r['content'][:500] + '...') if len(r['content']) > 500 else r['content']} for r in successful[:3]]
|
321 |
+
return {'top_keywords': top_keywords, 'content_samples': samples}
|
322 |
+
|
323 |
+
def _analyze_links(self, results: List[Dict]) -> Dict:
|
324 |
+
"""Genera un análisis de enlaces internos, dominios externos, anclas y tipos de archivos."""
|
325 |
+
all_links = []
|
326 |
+
for result in results:
|
327 |
+
if result.get('links'):
|
328 |
+
all_links.extend(result['links'])
|
329 |
+
if not all_links:
|
330 |
+
return {'internal_links': {}, 'external_domains': {}, 'common_anchors': {}, 'file_types': {}}
|
331 |
+
df = pd.DataFrame(all_links)
|
332 |
+
return {
|
333 |
+
'internal_links': df[df['type'] == 'internal']['url'].value_counts().head(20).to_dict(),
|
334 |
+
'external_domains': df[df['type'] == 'external']['url'].apply(lambda x: urlparse(x).netloc).value_counts().head(10).to_dict(),
|
335 |
+
'common_anchors': df['anchor'].value_counts().head(10).to_dict(),
|
336 |
+
'file_types': df['file_type'].value_counts().to_dict()
|
337 |
+
}
|
338 |
+
|
339 |
+
def _generate_seo_recommendations(self, results: List[Dict]) -> List[str]:
|
340 |
+
"""Genera recomendaciones SEO en base a las deficiencias encontradas en el análisis."""
|
341 |
+
successful = [r for r in results if r.get('status') == 'success']
|
342 |
+
if not successful:
|
343 |
+
return ["No se pudo analizar ningún contenido exitosamente"]
|
344 |
+
recs = []
|
345 |
+
missing_titles = sum(1 for r in successful if not r.get('metadata', {}).get('title'))
|
346 |
+
if missing_titles:
|
347 |
+
recs.append(f"📌 Añadir títulos a {missing_titles} páginas")
|
348 |
+
short_descriptions = sum(1 for r in successful if not r.get('metadata', {}).get('description'))
|
349 |
+
if short_descriptions:
|
350 |
+
recs.append(f"📌 Añadir meta descripciones a {short_descriptions} páginas")
|
351 |
+
short_content = sum(1 for r in successful if r.get('word_count', 0) < 300)
|
352 |
+
if short_content:
|
353 |
+
recs.append(f"📝 Ampliar contenido en {short_content} páginas (menos de 300 palabras)")
|
354 |
+
all_links = [link for r in results for link in r.get('links', [])]
|
355 |
+
if all_links:
|
356 |
+
df_links = pd.DataFrame(all_links)
|
357 |
+
internal_links = df_links[df_links['type'] == 'internal']
|
358 |
+
if len(internal_links) > 100:
|
359 |
+
recs.append(f"🔗 Optimizar estructura de enlaces internos ({len(internal_links)} enlaces)")
|
360 |
+
return recs if recs else ["✅ No se detectaron problemas críticos de SEO"]
|
361 |
+
|
362 |
+
def plot_internal_links(self, links_data: Dict) -> Any:
|
363 |
+
"""Genera un gráfico de barras horizontales mostrando los 20 principales enlaces internos."""
|
364 |
+
internal_links = links_data.get('internal_links', {})
|
365 |
+
if not internal_links:
|
366 |
+
return {}
|
367 |
+
fig, ax = plt.subplots()
|
368 |
+
names = list(internal_links.keys())
|
369 |
+
counts = list(internal_links.values())
|
370 |
+
ax.barh(names, counts)
|
371 |
+
ax.set_xlabel("Cantidad de enlaces")
|
372 |
+
ax.set_title("Top 20 Enlaces Internos")
|
373 |
+
plt.tight_layout()
|
374 |
+
return fig
|