LofiAmazonSpace / app.py
vshulev's picture
hi
199c1b0
raw
history blame
9.82 kB
import os
import pickle
import re
import PIL.Image
import pandas as pd
import numpy as np
import gradio as gr
from datasets import load_dataset
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
from sklearn.preprocessing import LabelEncoder
import torch
from torch import nn
from transformers import BertConfig, BertForMaskedLM, PreTrainedTokenizerFast
from huggingface_hub import PyTorchModelHubMixin
from pinecone import Pinecone
import rasterio
from rasterio.sample import sample_gen
from config import DEFAULT_INPUTS, MODELS, DATASETS, ID_TO_GENUS_MAP, LAYER_NAMES
# We need this for the eco layers because they are too big
PIL.Image.MAX_IMAGE_PIXELS = None
torch.set_grad_enabled(False)
# Configure pinecone
pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY"))
pc_index = pc.Index("amazon")
# Load models
class DNASeqClassifier(nn.Module, PyTorchModelHubMixin):
def __init__(self, bert_model, env_dim, num_classes):
super(DNASeqClassifier, self).__init__()
self.bert = bert_model
self.env_dim = env_dim
self.num_classes = num_classes
self.fc = nn.Linear(768 + env_dim, num_classes)
def forward(self, bert_inputs, env_data):
outputs = self.bert(**bert_inputs)
dna_embeddings = outputs.hidden_states[-1].mean(1)
combined = torch.cat((dna_embeddings, env_data), dim=1)
logits = self.fc(combined)
return logits
tokenizer = PreTrainedTokenizerFast.from_pretrained(MODELS["embeddings"])
embeddings_model = BertForMaskedLM.from_pretrained(MODELS["embeddings"])
classification_model = DNASeqClassifier.from_pretrained(
MODELS["classification"],
bert_model=BertForMaskedLM(
BertConfig(vocab_size=259, output_hidden_states=True),
),
)
with open("scaler.pkl", "rb") as f:
scaler = pickle.load(f)
embeddings_model.eval()
classification_model.eval()
# Load datasets
amazon_ds = load_dataset(DATASETS["amazon"])
def set_default_inputs():
return (DEFAULT_INPUTS["dna_sequence"],
DEFAULT_INPUTS["latitude"],
DEFAULT_INPUTS["longitude"])
def preprocess(dna_sequence: str, latitude: float, longitude: float):
"""Prepares app input for downsteram tasks"""
# Preprocess the DNA sequence turning it into an embedding
dna_seq_preprocessed: str = re.sub(r"[^ACGT]", "N", dna_sequence)
dna_seq_preprocessed: str = re.sub(r"N+$", "", dna_sequence)
dna_seq_preprocessed = dna_seq_preprocessed[:660]
dna_seq_preprocessed = " ".join([
dna_seq_preprocessed[i:i+4] for i in range(0, len(dna_seq_preprocessed), 4)
])
dna_embedding: torch.Tensor = embeddings_model(
**tokenizer(dna_seq_preprocessed, return_tensors="pt")
).hidden_states[-1].mean(1).squeeze()
# Preprocess the location data
coords = (float(latitude), float(longitude))
return dna_embedding, coords[0], coords[1]
def tokenize(dna_sequence: str) -> dict[str, torch.Tensor]:
dna_seq_preprocessed: str = re.sub(r"[^ACGT]", "N", dna_sequence)
dna_seq_preprocessed: str = re.sub(r"N+$", "", dna_sequence)
dna_seq_preprocessed = dna_seq_preprocessed[:660]
dna_seq_preprocessed = " ".join([
dna_seq_preprocessed[i:i+4] for i in range(0, len(dna_seq_preprocessed), 4)
])
return tokenizer(dna_seq_preprocessed, return_tensors="pt")
def get_embedding(dna_sequence: str) -> torch.Tensor:
dna_embedding: torch.Tensor = embeddings_model(
**tokenize(dna_sequence)
).hidden_states[-1].mean(1).squeeze()
return dna_embedding
def predict_genus(method: str, dna_sequence: str, latitude: str, longitude: str):
coords = (float(latitude), float(longitude))
if method == "cosine":
embedding = get_embedding(dna_sequence)
result = pc_index.query(
namespace="all",
vector=embedding.tolist(),
top_k=10,
include_metadata=True,
)
top_k = [m["metadata"]["genus"] for m in result["matches"]]
top_k = pd.Series(top_k).value_counts()
top_k = top_k / top_k.sum()
if method == "fine_tuned_model":
bert_inputs = tokenize(dna_sequence)
env_data = []
for layer in LAYER_NAMES:
with rasterio.open(layer) as dataset:
# Get the corresponding ecological values for the samples
results = sample_gen(dataset, [coords])
results = [r for r in results]
layer_data = np.mean(results[0])
env_data.append(layer_data)
env_data = scaler.transform([env_data])
env_data = torch.from_numpy(env_data).to(torch.float32)
logits = classification_model(bert_inputs, env_data)
temperature = 0.2
probs = torch.softmax(logits / temperature, dim=1).squeeze()
top_k = torch.topk(probs, 10)
top_k = pd.Series(
top_k.values.detach().numpy(),
index=[ID_TO_GENUS_MAP[i] for i in top_k.indices.detach().numpy()]
)
fig, ax = plt.subplots()
ax.bar(top_k.index.astype(str), top_k.values)
ax.set_ylim(0, 1)
ax.set_title("Genus Prediction")
ax.set_xlabel("Genus")
ax.set_ylabel("Probability")
ax.set_xticklabels(top_k.index.astype(str), rotation=90)
fig.subplots_adjust(bottom=0.3)
fig.canvas.draw()
return PIL.Image.frombytes("RGB", fig.canvas.get_width_height(), fig.canvas.tostring_rgb())
def cluster_dna(top_k: float):
df = amazon_ds["train"].to_pandas()
df = df[df["genus"].notna()]
top_k = int(top_k)
genus_counts = df["genus"].value_counts()
top_genuses = genus_counts.head(top_k).index
df = df[df["genus"].isin(top_genuses)]
tsne = TSNE(
n_components=2, perplexity=30, learning_rate=200,
n_iter=1000, random_state=0,
)
X = np.stack(df["embeddings"].tolist())
y = df["genus"].tolist()
X_tsne = tsne.fit_transform(X)
label_encoder = LabelEncoder()
y_encoded = label_encoder.fit_transform(y)
fig, ax = plt.subplots()
ax.scatter(X_tsne[:, 0], X_tsne[:, 1], c=y_encoded, cmap="viridis", alpha=0.7)
ax.set_title(f"DNA Embedding Space (of {str(top_k)} most common genera)")
# Reduce unnecessary whitespace
ax.set_xlim(X_tsne[:, 0].min() - 0.1, X_tsne[:, 0].max() + 0.1)
fig.canvas.draw()
return PIL.Image.frombytes("RGB", fig.canvas.get_width_height(), fig.canvas.tostring_rgb())
with gr.Blocks() as demo:
# Header section
gr.Markdown("# DNA Identifier Tool")
gr.Markdown((
"Welcome to Lofi Amazon Beats' DNA Identifier Tool. "
"Please enter a DNA sequence and the coordinates at which its sample "
"was taken to get started. Click 'I'm feeling lucky' to see use a "
"random sequence."
))
with gr.Row():
with gr.Column():
inp_dna = gr.Textbox(label="DNA", placeholder="e.g. AACAATGTA... (min 200 and max 660 characters)")
with gr.Column():
with gr.Row():
inp_lat = gr.Textbox(label="Latitude", placeholder="e.g. -3.009083")
with gr.Row():
inp_lng = gr.Textbox(label="Longitude", placeholder="e.g. -58.68281")
with gr.Row():
btn_defaults = gr.Button("I'm feeling lucky")
btn_defaults.click(fn=set_default_inputs, outputs=[inp_dna, inp_lat, inp_lng])
with gr.Tab("Genus Prediction"):
gr.Markdown("""
## Genus prediction
A demo of predicting the genus of a DNA sequence using multiple
approaches (method dropdown):
- **fine_tuned_model**: using our
`LofiAmazon/BarcodeBERT-Finetuned-Amazon` which predicts the genus
based on the DNA sequence and environmental data.
- **cosine**: computes a cosine similarity between the DNA sequence
embedding generated by our model and the embeddings of known samples
that we precomputed and stored in a Pinecone index. Thie method
DOES NOT examine ecological layer data.
""")
# gr.Interface(
# fn=predict_genus,
# inputs=[
# gr.Dropdown(choices=["cosine", "fine_tuned_model"], value="fine_tuned_model"),
# inp_dna,
# inp_lat,
# inp_lng,
# ],
# outputs=["image"],
# allow_flagging="never",
# )
method_dropdown = gr.Dropdown(choices=["cosine", "fine_tuned_model"], value="fine_tuned_model")
predict_button = gr.Button("Predict Genus")
genus_output = gr.Image()
predict_button.click(
fn=predict_genus,
inputs=[method_dropdown, inp_dna, inp_lat, inp_lng],
outputs=genus_output
)
with gr.Tab("DNA Embedding Space Visualizer"):
gr.Markdown("""
## DNA Embedding Space Visualizer
We show a 2D t-SNE plot of the DNA embeddings of the five most common
genera in our dataset. This shows that the DNA Transformer model is
learning to cluster similar DNA sequences together.
""")
# gr.Interface(
# fn=cluster_dna,
# inputs=[
# gr.Slider(minimum=1, maximum=10, step=1, value=5,
# label="Number of top genera to visualize")
# ],
# outputs=["image"],
# allow_flagging="never",
# )
top_k_slider = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="Number of top genera to visualize")
visualize_button = gr.Button("Visualize Embedding Space")
visualize_output = gr.Image()
visualize_button.click(
fn=cluster_dna,
inputs=top_k_slider,
outputs=visualize_output
)
demo.launch()