Spaces:
Runtime error
Runtime error
File size: 9,823 Bytes
2d43134 2ee1fb2 c79073a e86736e 89a88ac cfbe98d e86736e 89a88ac 7c30d0a c79073a 2d43134 2ee1fb2 c79073a 2ee1fb2 c79073a 2d43134 c79073a 2ee1fb2 c79073a 9fe11bc 3f8dd98 cfbe98d 3f8dd98 89a88ac 2d43134 c79073a 2d43134 89a88ac c79073a 2d43134 a83006f 2d43134 89a88ac 2d43134 fa1b7c0 2d43134 89a88ac 2d43134 89a88ac 2d43134 47e4e3e 2d43134 2ee1fb2 973829c bb0609f 2d43134 bb0609f 2d43134 bb0609f 2d43134 fa1b7c0 3f8dd98 9fe11bc 3f8dd98 cfbe98d c79073a 89a88ac a83006f 9fe11bc 199c1b0 9fe11bc 199c1b0 2d43134 199c1b0 2d43134 9fe11bc 199c1b0 9fe11bc 2d43134 199c1b0 9fe11bc 199c1b0 9fe11bc fa1b7c0 cfbe98d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import os
import pickle
import re
import PIL.Image
import pandas as pd
import numpy as np
import gradio as gr
from datasets import load_dataset
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
from sklearn.preprocessing import LabelEncoder
import torch
from torch import nn
from transformers import BertConfig, BertForMaskedLM, PreTrainedTokenizerFast
from huggingface_hub import PyTorchModelHubMixin
from pinecone import Pinecone
import rasterio
from rasterio.sample import sample_gen
from config import DEFAULT_INPUTS, MODELS, DATASETS, ID_TO_GENUS_MAP, LAYER_NAMES
# We need this for the eco layers because they are too big
PIL.Image.MAX_IMAGE_PIXELS = None
torch.set_grad_enabled(False)
# Configure pinecone
pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY"))
pc_index = pc.Index("amazon")
# Load models
class DNASeqClassifier(nn.Module, PyTorchModelHubMixin):
def __init__(self, bert_model, env_dim, num_classes):
super(DNASeqClassifier, self).__init__()
self.bert = bert_model
self.env_dim = env_dim
self.num_classes = num_classes
self.fc = nn.Linear(768 + env_dim, num_classes)
def forward(self, bert_inputs, env_data):
outputs = self.bert(**bert_inputs)
dna_embeddings = outputs.hidden_states[-1].mean(1)
combined = torch.cat((dna_embeddings, env_data), dim=1)
logits = self.fc(combined)
return logits
tokenizer = PreTrainedTokenizerFast.from_pretrained(MODELS["embeddings"])
embeddings_model = BertForMaskedLM.from_pretrained(MODELS["embeddings"])
classification_model = DNASeqClassifier.from_pretrained(
MODELS["classification"],
bert_model=BertForMaskedLM(
BertConfig(vocab_size=259, output_hidden_states=True),
),
)
with open("scaler.pkl", "rb") as f:
scaler = pickle.load(f)
embeddings_model.eval()
classification_model.eval()
# Load datasets
amazon_ds = load_dataset(DATASETS["amazon"])
def set_default_inputs():
return (DEFAULT_INPUTS["dna_sequence"],
DEFAULT_INPUTS["latitude"],
DEFAULT_INPUTS["longitude"])
def preprocess(dna_sequence: str, latitude: float, longitude: float):
"""Prepares app input for downsteram tasks"""
# Preprocess the DNA sequence turning it into an embedding
dna_seq_preprocessed: str = re.sub(r"[^ACGT]", "N", dna_sequence)
dna_seq_preprocessed: str = re.sub(r"N+$", "", dna_sequence)
dna_seq_preprocessed = dna_seq_preprocessed[:660]
dna_seq_preprocessed = " ".join([
dna_seq_preprocessed[i:i+4] for i in range(0, len(dna_seq_preprocessed), 4)
])
dna_embedding: torch.Tensor = embeddings_model(
**tokenizer(dna_seq_preprocessed, return_tensors="pt")
).hidden_states[-1].mean(1).squeeze()
# Preprocess the location data
coords = (float(latitude), float(longitude))
return dna_embedding, coords[0], coords[1]
def tokenize(dna_sequence: str) -> dict[str, torch.Tensor]:
dna_seq_preprocessed: str = re.sub(r"[^ACGT]", "N", dna_sequence)
dna_seq_preprocessed: str = re.sub(r"N+$", "", dna_sequence)
dna_seq_preprocessed = dna_seq_preprocessed[:660]
dna_seq_preprocessed = " ".join([
dna_seq_preprocessed[i:i+4] for i in range(0, len(dna_seq_preprocessed), 4)
])
return tokenizer(dna_seq_preprocessed, return_tensors="pt")
def get_embedding(dna_sequence: str) -> torch.Tensor:
dna_embedding: torch.Tensor = embeddings_model(
**tokenize(dna_sequence)
).hidden_states[-1].mean(1).squeeze()
return dna_embedding
def predict_genus(method: str, dna_sequence: str, latitude: str, longitude: str):
coords = (float(latitude), float(longitude))
if method == "cosine":
embedding = get_embedding(dna_sequence)
result = pc_index.query(
namespace="all",
vector=embedding.tolist(),
top_k=10,
include_metadata=True,
)
top_k = [m["metadata"]["genus"] for m in result["matches"]]
top_k = pd.Series(top_k).value_counts()
top_k = top_k / top_k.sum()
if method == "fine_tuned_model":
bert_inputs = tokenize(dna_sequence)
env_data = []
for layer in LAYER_NAMES:
with rasterio.open(layer) as dataset:
# Get the corresponding ecological values for the samples
results = sample_gen(dataset, [coords])
results = [r for r in results]
layer_data = np.mean(results[0])
env_data.append(layer_data)
env_data = scaler.transform([env_data])
env_data = torch.from_numpy(env_data).to(torch.float32)
logits = classification_model(bert_inputs, env_data)
temperature = 0.2
probs = torch.softmax(logits / temperature, dim=1).squeeze()
top_k = torch.topk(probs, 10)
top_k = pd.Series(
top_k.values.detach().numpy(),
index=[ID_TO_GENUS_MAP[i] for i in top_k.indices.detach().numpy()]
)
fig, ax = plt.subplots()
ax.bar(top_k.index.astype(str), top_k.values)
ax.set_ylim(0, 1)
ax.set_title("Genus Prediction")
ax.set_xlabel("Genus")
ax.set_ylabel("Probability")
ax.set_xticklabels(top_k.index.astype(str), rotation=90)
fig.subplots_adjust(bottom=0.3)
fig.canvas.draw()
return PIL.Image.frombytes("RGB", fig.canvas.get_width_height(), fig.canvas.tostring_rgb())
def cluster_dna(top_k: float):
df = amazon_ds["train"].to_pandas()
df = df[df["genus"].notna()]
top_k = int(top_k)
genus_counts = df["genus"].value_counts()
top_genuses = genus_counts.head(top_k).index
df = df[df["genus"].isin(top_genuses)]
tsne = TSNE(
n_components=2, perplexity=30, learning_rate=200,
n_iter=1000, random_state=0,
)
X = np.stack(df["embeddings"].tolist())
y = df["genus"].tolist()
X_tsne = tsne.fit_transform(X)
label_encoder = LabelEncoder()
y_encoded = label_encoder.fit_transform(y)
fig, ax = plt.subplots()
ax.scatter(X_tsne[:, 0], X_tsne[:, 1], c=y_encoded, cmap="viridis", alpha=0.7)
ax.set_title(f"DNA Embedding Space (of {str(top_k)} most common genera)")
# Reduce unnecessary whitespace
ax.set_xlim(X_tsne[:, 0].min() - 0.1, X_tsne[:, 0].max() + 0.1)
fig.canvas.draw()
return PIL.Image.frombytes("RGB", fig.canvas.get_width_height(), fig.canvas.tostring_rgb())
with gr.Blocks() as demo:
# Header section
gr.Markdown("# DNA Identifier Tool")
gr.Markdown((
"Welcome to Lofi Amazon Beats' DNA Identifier Tool. "
"Please enter a DNA sequence and the coordinates at which its sample "
"was taken to get started. Click 'I'm feeling lucky' to see use a "
"random sequence."
))
with gr.Row():
with gr.Column():
inp_dna = gr.Textbox(label="DNA", placeholder="e.g. AACAATGTA... (min 200 and max 660 characters)")
with gr.Column():
with gr.Row():
inp_lat = gr.Textbox(label="Latitude", placeholder="e.g. -3.009083")
with gr.Row():
inp_lng = gr.Textbox(label="Longitude", placeholder="e.g. -58.68281")
with gr.Row():
btn_defaults = gr.Button("I'm feeling lucky")
btn_defaults.click(fn=set_default_inputs, outputs=[inp_dna, inp_lat, inp_lng])
with gr.Tab("Genus Prediction"):
gr.Markdown("""
## Genus prediction
A demo of predicting the genus of a DNA sequence using multiple
approaches (method dropdown):
- **fine_tuned_model**: using our
`LofiAmazon/BarcodeBERT-Finetuned-Amazon` which predicts the genus
based on the DNA sequence and environmental data.
- **cosine**: computes a cosine similarity between the DNA sequence
embedding generated by our model and the embeddings of known samples
that we precomputed and stored in a Pinecone index. Thie method
DOES NOT examine ecological layer data.
""")
# gr.Interface(
# fn=predict_genus,
# inputs=[
# gr.Dropdown(choices=["cosine", "fine_tuned_model"], value="fine_tuned_model"),
# inp_dna,
# inp_lat,
# inp_lng,
# ],
# outputs=["image"],
# allow_flagging="never",
# )
method_dropdown = gr.Dropdown(choices=["cosine", "fine_tuned_model"], value="fine_tuned_model")
predict_button = gr.Button("Predict Genus")
genus_output = gr.Image()
predict_button.click(
fn=predict_genus,
inputs=[method_dropdown, inp_dna, inp_lat, inp_lng],
outputs=genus_output
)
with gr.Tab("DNA Embedding Space Visualizer"):
gr.Markdown("""
## DNA Embedding Space Visualizer
We show a 2D t-SNE plot of the DNA embeddings of the five most common
genera in our dataset. This shows that the DNA Transformer model is
learning to cluster similar DNA sequences together.
""")
# gr.Interface(
# fn=cluster_dna,
# inputs=[
# gr.Slider(minimum=1, maximum=10, step=1, value=5,
# label="Number of top genera to visualize")
# ],
# outputs=["image"],
# allow_flagging="never",
# )
top_k_slider = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="Number of top genera to visualize")
visualize_button = gr.Button("Visualize Embedding Space")
visualize_output = gr.Image()
visualize_button.click(
fn=cluster_dna,
inputs=top_k_slider,
outputs=visualize_output
)
demo.launch()
|