vshulev commited on
Commit
199c1b0
·
1 Parent(s): 09685b7
Files changed (1) hide show
  1. app.py +38 -18
app.py CHANGED
@@ -215,7 +215,7 @@ with gr.Blocks() as demo:
215
 
216
  with gr.Tab("Genus Prediction"):
217
  gr.Markdown("""
218
- # Genus prediction
219
 
220
  A demo of predicting the genus of a DNA sequence using multiple
221
  approaches (method dropdown):
@@ -228,35 +228,55 @@ with gr.Blocks() as demo:
228
  that we precomputed and stored in a Pinecone index. Thie method
229
  DOES NOT examine ecological layer data.
230
  """)
231
- gr.Interface(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
232
  fn=predict_genus,
233
- inputs=[
234
- gr.Dropdown(choices=["cosine", "fine_tuned_model"], value="fine_tuned_model"),
235
- inp_dna,
236
- inp_lat,
237
- inp_lng,
238
- ],
239
- outputs=["image"],
240
- allow_flagging="never",
241
  )
242
 
243
  with gr.Tab("DNA Embedding Space Visualizer"):
244
  gr.Markdown("""
245
- # DNA Embedding Space Visualizer
246
 
247
  We show a 2D t-SNE plot of the DNA embeddings of the five most common
248
  genera in our dataset. This shows that the DNA Transformer model is
249
  learning to cluster similar DNA sequences together.
250
  """)
251
 
252
- gr.Interface(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
253
  fn=cluster_dna,
254
- inputs=[
255
- gr.Slider(minimum=1, maximum=10, step=1, value=5,
256
- label="Number of top genera to visualize")
257
- ],
258
- outputs=["image"],
259
- allow_flagging="never",
260
  )
261
 
262
  demo.launch()
 
215
 
216
  with gr.Tab("Genus Prediction"):
217
  gr.Markdown("""
218
+ ## Genus prediction
219
 
220
  A demo of predicting the genus of a DNA sequence using multiple
221
  approaches (method dropdown):
 
228
  that we precomputed and stored in a Pinecone index. Thie method
229
  DOES NOT examine ecological layer data.
230
  """)
231
+ # gr.Interface(
232
+ # fn=predict_genus,
233
+ # inputs=[
234
+ # gr.Dropdown(choices=["cosine", "fine_tuned_model"], value="fine_tuned_model"),
235
+ # inp_dna,
236
+ # inp_lat,
237
+ # inp_lng,
238
+ # ],
239
+ # outputs=["image"],
240
+ # allow_flagging="never",
241
+ # )
242
+
243
+ method_dropdown = gr.Dropdown(choices=["cosine", "fine_tuned_model"], value="fine_tuned_model")
244
+ predict_button = gr.Button("Predict Genus")
245
+ genus_output = gr.Image()
246
+
247
+ predict_button.click(
248
  fn=predict_genus,
249
+ inputs=[method_dropdown, inp_dna, inp_lat, inp_lng],
250
+ outputs=genus_output
 
 
 
 
 
 
251
  )
252
 
253
  with gr.Tab("DNA Embedding Space Visualizer"):
254
  gr.Markdown("""
255
+ ## DNA Embedding Space Visualizer
256
 
257
  We show a 2D t-SNE plot of the DNA embeddings of the five most common
258
  genera in our dataset. This shows that the DNA Transformer model is
259
  learning to cluster similar DNA sequences together.
260
  """)
261
 
262
+ # gr.Interface(
263
+ # fn=cluster_dna,
264
+ # inputs=[
265
+ # gr.Slider(minimum=1, maximum=10, step=1, value=5,
266
+ # label="Number of top genera to visualize")
267
+ # ],
268
+ # outputs=["image"],
269
+ # allow_flagging="never",
270
+ # )
271
+
272
+ top_k_slider = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="Number of top genera to visualize")
273
+ visualize_button = gr.Button("Visualize Embedding Space")
274
+ visualize_output = gr.Image()
275
+
276
+ visualize_button.click(
277
  fn=cluster_dna,
278
+ inputs=top_k_slider,
279
+ outputs=visualize_output
 
 
 
 
280
  )
281
 
282
  demo.launch()