Spaces:
Runtime error
Runtime error
jennzhuge
commited on
Commit
·
89a88ac
1
Parent(s):
a0e49d5
hi
Browse files
app.py
CHANGED
@@ -1,9 +1,12 @@
|
|
1 |
import json
|
2 |
import pandas as pd
|
|
|
3 |
import gradio as gr
|
4 |
# from transformers import PreTrainedTokenizerFast, BertForMaskedLM
|
5 |
from datasets import load_dataset
|
6 |
import infer
|
|
|
|
|
7 |
|
8 |
with open("default_inputs.json", "r") as default_inputs_file:
|
9 |
DEFAULT_INPUTS = json.load(default_inputs_file)
|
@@ -42,6 +45,8 @@ def preprocess():
|
|
42 |
def predict_genus():
|
43 |
data = preprocess()
|
44 |
out = infer.infer_dna(data)
|
|
|
|
|
45 |
|
46 |
results = []
|
47 |
|
@@ -54,35 +59,73 @@ def predict_genus():
|
|
54 |
|
55 |
return results
|
56 |
|
57 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
|
62 |
with gr.Blocks() as demo:
|
63 |
# Header section
|
64 |
gr.Markdown("# DNA Identifier Tool")
|
65 |
-
gr.Markdown("Welcome to Lofi Amazon Beats' DNA Identifier Tool")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
with gr.Tab("Genus Prediction"):
|
68 |
-
gr.Markdown("Enter a DNA sequence and the coordinates at which its sample was taken to get a genus prediction. Click 'I'm feeling lucky' to see a prediction for a random sequence.")
|
69 |
|
70 |
# Collect inputs for app (DNA and location)
|
71 |
-
with gr.Row():
|
72 |
-
|
73 |
-
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
|
81 |
-
with gr.Row():
|
82 |
-
|
83 |
|
84 |
-
|
85 |
-
|
86 |
|
87 |
with gr.Row():
|
88 |
gr.Markdown('Make plot or table for Top 5 species')
|
@@ -97,6 +140,9 @@ with gr.Blocks() as demo:
|
|
97 |
with gr.Row() as row:
|
98 |
with gr.Column():
|
99 |
gr.Markdown("Plot of your DNA sequence among other known species clusters.")
|
|
|
|
|
|
|
100 |
|
101 |
with gr.Column():
|
102 |
gr.Markdown("Plot of the five most common species at your sample coordinate.")
|
|
|
1 |
import json
|
2 |
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
import gradio as gr
|
5 |
# from transformers import PreTrainedTokenizerFast, BertForMaskedLM
|
6 |
from datasets import load_dataset
|
7 |
import infer
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
from sklearn.manifold import TSNE
|
10 |
|
11 |
with open("default_inputs.json", "r") as default_inputs_file:
|
12 |
DEFAULT_INPUTS = json.load(default_inputs_file)
|
|
|
45 |
def predict_genus():
|
46 |
data = preprocess()
|
47 |
out = infer.infer_dna(data)
|
48 |
+
|
49 |
+
|
50 |
|
51 |
results = []
|
52 |
|
|
|
59 |
|
60 |
return results
|
61 |
|
62 |
+
def tsne_DNA(data, genuses):
|
63 |
+
data["embeddings"] = data["embeddings"].apply(lambda x: np.array(list(map(float, x[1:-1].split()))))
|
64 |
+
|
65 |
+
# Pick genuses with most samples
|
66 |
+
top_k = 5
|
67 |
+
genus_counts = df["genus"].value_counts()
|
68 |
+
top_genuses = genus_counts.head(top_k).index
|
69 |
+
df = df[df["genus"].isin(top_genuses)]
|
70 |
+
|
71 |
+
# Create a t-SNE plot of the embeddings
|
72 |
+
n_genus = len(df["genus"].unique())
|
73 |
+
tsne = TSNE(n_components=2, perplexity=30, learning_rate=200, n_iter=1000, random_state=0)
|
74 |
+
|
75 |
+
X = np.stack(df["embeddings"].tolist())
|
76 |
+
y = df["genus"].tolist()
|
77 |
|
78 |
+
X_tsne = tsne.fit_transform(X)
|
79 |
+
|
80 |
+
label_encoder = LabelEncoder()
|
81 |
+
y_encoded = label_encoder.fit_transform(y)
|
82 |
+
|
83 |
+
plot = plt.figure(figsize=(6, 5))
|
84 |
+
scatter = plt.scatter(X_tsne[:, 0], X_tsne[:, 1], c=y_encoded, cmap="viridis", alpha=0.7)
|
85 |
+
|
86 |
+
return plot
|
87 |
|
88 |
|
89 |
with gr.Blocks() as demo:
|
90 |
# Header section
|
91 |
gr.Markdown("# DNA Identifier Tool")
|
92 |
+
gr.Markdown("Welcome to Lofi Amazon Beats' DNA Identifier Tool. Please enter a DNA sequence and the coordinates at which its sample was taken to get started. Click 'I'm feeling lucky' to see use a random sequence.")
|
93 |
+
with gr.Row():
|
94 |
+
with gr.Column():
|
95 |
+
inp_dna = gr.Textbox(label="DNA", placeholder="e.g. AACAATGTA... (min 200 and max 660 characters)")
|
96 |
+
|
97 |
+
with gr.Column():
|
98 |
+
with gr.Row():
|
99 |
+
inp_lat = gr.Textbox(label="Latitude", placeholder="e.g. -3.009083")
|
100 |
+
with gr.Row():
|
101 |
+
inp_lng = gr.Textbox(label="Longitude", placeholder="e.g. -58.68281")
|
102 |
+
|
103 |
+
with gr.Row():
|
104 |
+
btn_run = gr.Button("Predict")
|
105 |
+
|
106 |
+
btn_defaults = gr.Button("I'm feeling lucky")
|
107 |
+
btn_defaults.click(fn=set_default_inputs, outputs=[inp_dna, inp_lat, inp_lng])
|
108 |
+
|
109 |
|
110 |
with gr.Tab("Genus Prediction"):
|
111 |
+
# gr.Markdown("Enter a DNA sequence and the coordinates at which its sample was taken to get a genus prediction. Click 'I'm feeling lucky' to see a prediction for a random sequence.")
|
112 |
|
113 |
# Collect inputs for app (DNA and location)
|
114 |
+
# with gr.Row():
|
115 |
+
# with gr.Column():
|
116 |
+
# inp_dna = gr.Textbox(label="DNA", placeholder="e.g. AACAATGTA... (min 200 and max 660 characters)")
|
117 |
|
118 |
+
# with gr.Column():
|
119 |
+
# with gr.Row():
|
120 |
+
# inp_lat = gr.Textbox(label="Latitude", placeholder="e.g. -3.009083")
|
121 |
+
# with gr.Row():
|
122 |
+
# inp_lng = gr.Textbox(label="Longitude", placeholder="e.g. -58.68281")
|
123 |
|
124 |
+
# with gr.Row():
|
125 |
+
# btn_run = gr.Button("Predict")
|
126 |
|
127 |
+
# btn_defaults = gr.Button("I'm feeling lucky")
|
128 |
+
# btn_defaults.click(fn=set_default_inputs, outputs=[inp_dna, inp_lat, inp_lng])
|
129 |
|
130 |
with gr.Row():
|
131 |
gr.Markdown('Make plot or table for Top 5 species')
|
|
|
140 |
with gr.Row() as row:
|
141 |
with gr.Column():
|
142 |
gr.Markdown("Plot of your DNA sequence among other known species clusters.")
|
143 |
+
plot = gr.Plot("")
|
144 |
+
|
145 |
+
btn_run.click(fn=tsne_DNA, inputs=[inp_dna, genus_out])
|
146 |
|
147 |
with gr.Column():
|
148 |
gr.Markdown("Plot of the five most common species at your sample coordinate.")
|