OpenSLU / model_manager.py
LightChen2333's picture
Upload model_manager.py
bab7439
raw
history blame
15.8 kB
'''
Author: Qiguang Chen
Date: 2023-01-11 10:39:26
LastEditors: Qiguang Chen
LastEditTime: 2023-02-08 00:42:56
Description: manage all process of model training and prediction.
'''
import os
import random
import numpy as np
import torch
from tqdm import tqdm
from common import utils
from common.loader import DataFactory
from common.logger import Logger
from common.metric import Evaluator
from common.tokenizer import get_tokenizer, get_tokenizer_class, load_embedding
from common.utils import InputData, instantiate
from common.utils import OutputData
from common.config import Config
import dill
class ModelManager(object):
def __init__(self, config: Config):
"""create model manager by config
Args:
config (Config): configuration to manage all process in OpenSLU
"""
# init config
self.config = config
self.__set_seed(self.config.base.get("seed"))
self.device = self.config.base.get("device")
# enable accelerator
if "accelerator" in self.config and self.config["accelerator"].get("use_accelerator"):
from accelerate import Accelerator
self.accelerator = Accelerator(log_with="wandb")
else:
self.accelerator = None
if self.config.base.get("train"):
self.tokenizer = get_tokenizer(
self.config.tokenizer.get("_tokenizer_name_"))
self.logger = Logger(
"wandb", self.config.base["name"], start_time=config.start_time, accelerator=self.accelerator)
# init dataloader & load data
if self.config.base.get("save_dir"):
self.model_save_dir = self.config.base["save_dir"]
else:
if not os.path.exists("save/"):
os.mkdir("save/")
self.model_save_dir = "save/" + config.start_time
if not os.path.exists(self.model_save_dir):
os.mkdir(self.model_save_dir)
batch_size = self.config.base["batch_size"]
df = DataFactory(tokenizer=self.tokenizer,
use_multi_intent=self.config.base.get("multi_intent"),
to_lower_case=self.config.base.get("_to_lower_case_"))
train_dataset = df.load_dataset(self.config.dataset, split="train")
# update label and vocabulary
df.update_label_names(train_dataset)
df.update_vocabulary(train_dataset)
# init tokenizer config and dataloaders
tokenizer_config = {key: self.config.tokenizer[key]
for key in self.config.tokenizer if key[0] != "_" and key[-1] != "_"}
self.train_dataloader = df.get_data_loader(train_dataset,
batch_size,
shuffle=True,
device=self.device,
enable_label=True,
align_mode=self.config.tokenizer.get(
"_align_mode_"),
label2tensor=True,
**tokenizer_config)
dev_dataset = df.load_dataset(
self.config.dataset, split="validation")
self.dev_dataloader = df.get_data_loader(dev_dataset,
batch_size,
shuffle=False,
device=self.device,
enable_label=True,
align_mode=self.config.tokenizer.get(
"_align_mode_"),
label2tensor=False,
**tokenizer_config)
df.update_vocabulary(dev_dataset)
# add intent label num and slot label num to config
if int(self.config.get_intent_label_num()) == 0 or int(self.config.get_slot_label_num()) == 0:
self.intent_list = df.intent_label_list
self.intent_dict = df.intent_label_dict
self.config.set_intent_label_num(len(self.intent_list))
self.slot_list = df.slot_label_list
self.slot_dict = df.slot_label_dict
self.config.set_slot_label_num(len(self.slot_list))
self.config.set_vocab_size(self.tokenizer.vocab_size)
# autoload embedding for non-pretrained encoder
if self.config["model"]["encoder"].get("embedding") and self.config["model"]["encoder"]["embedding"].get(
"load_embedding_name"):
self.config["model"]["encoder"]["embedding"]["embedding_matrix"] = load_embedding(self.tokenizer,
self.config["model"][
"encoder"][
"embedding"].get(
"load_embedding_name"))
# fill template in config
self.config.autoload_template()
# save config
self.logger.set_config(self.config)
self.model = None
self.optimizer = None
self.total_step = None
self.lr_scheduler = None
if self.config.tokenizer.get("_tokenizer_name_") == "word_tokenizer":
self.tokenizer.save(os.path.join(self.model_save_dir, "tokenizer.json"))
utils.save_json(os.path.join(
self.model_save_dir, "label.json"), {"intent": self.intent_list,"slot": self.slot_list})
if self.config.base.get("test"):
self.test_dataset = df.load_dataset(
self.config.dataset, split="test")
self.test_dataloader = df.get_data_loader(self.test_dataset,
batch_size,
shuffle=False,
device=self.device,
enable_label=True,
align_mode=self.config.tokenizer.get(
"_align_mode_"),
label2tensor=False,
**tokenizer_config)
def init_model(self, model):
"""init model, optimizer, lr_scheduler
Args:
model (Any): pytorch model
"""
self.model = model
self.model.to(self.device)
if self.config.base.get("train"):
self.optimizer = instantiate(
self.config["optimizer"])(self.model.parameters())
self.total_step = int(self.config.base.get(
"epoch_num")) * len(self.train_dataloader)
self.lr_scheduler = instantiate(self.config["scheduler"])(
optimizer=self.optimizer,
num_training_steps=self.total_step
)
if self.accelerator is not None:
self.model, self.optimizer, self.train_dataloader, self.lr_scheduler = self.accelerator.prepare(
self.model, self.optimizer, self.train_dataloader, self.lr_scheduler)
if self.config.base.get("load_dir_path"):
self.accelerator.load_state(self.config.base.get("load_dir_path"))
# self.dev_dataloader = self.accelerator.prepare(self.dev_dataloader)
def eval(self, step: int, best_metric: float) -> float:
""" evaluation models.
Args:
step (int): which step the model has trained in
best_metric (float): last best metric value to judge whether to test or save model
Returns:
float: updated best metric value
"""
# TODO: save dev
_, res = self.__evaluate(self.model, self.dev_dataloader)
self.logger.log_metric(res, metric_split="dev", step=step)
if res[self.config.base.get("best_key")] > best_metric:
best_metric = res[self.config.base.get("best_key")]
outputs, test_res = self.__evaluate(
self.model, self.test_dataloader)
if not os.path.exists(self.model_save_dir):
os.mkdir(self.model_save_dir)
if self.accelerator is None:
torch.save(self.model, os.path.join(
self.model_save_dir, "model.pkl"))
torch.save(self.optimizer, os.path.join(
self.model_save_dir, "optimizer.pkl"))
torch.save(self.lr_scheduler, os.path.join(
self.model_save_dir, "lr_scheduler.pkl"), pickle_module=dill)
torch.save(step, os.path.join(
self.model_save_dir, "step.pkl"))
else:
self.accelerator.wait_for_everyone()
unwrapped_model = self.accelerator.unwrap_model(self.model)
self.accelerator.save(unwrapped_model.state_dict(
), os.path.join(self.model_save_dir, "model.pkl"))
self.accelerator.save_state(output_dir=self.model_save_dir)
outputs.save(self.model_save_dir, self.test_dataset)
self.logger.log_metric(test_res, metric_split="test", step=step)
return best_metric
def train(self) -> float:
""" train models.
Returns:
float: updated best metric value
"""
step = 0
best_metric = 0
progress_bar = tqdm(range(self.total_step))
for _ in range(int(self.config.base.get("epoch_num"))):
for data in self.train_dataloader:
if step == 0:
self.logger.info(data.get_item(
0, tokenizer=self.tokenizer, intent_map=self.intent_list, slot_map=self.slot_list))
output = self.model(data)
if self.accelerator is not None and hasattr(self.model, "module"):
loss, intent_loss, slot_loss = self.model.module.compute_loss(
pred=output, target=data)
else:
loss, intent_loss, slot_loss = self.model.compute_loss(
pred=output, target=data)
self.logger.log_loss(loss, "Loss", step=step)
self.logger.log_loss(intent_loss, "Intent Loss", step=step)
self.logger.log_loss(slot_loss, "Slot Loss", step=step)
self.optimizer.zero_grad()
if self.accelerator is not None:
self.accelerator.backward(loss)
else:
loss.backward()
self.optimizer.step()
self.lr_scheduler.step()
if not self.config.base.get("eval_by_epoch") and step % self.config.base.get(
"eval_step") == 0 and step != 0:
best_metric = self.eval(step, best_metric)
step += 1
progress_bar.update(1)
if self.config.base.get("eval_by_epoch"):
best_metric = self.eval(step, best_metric)
self.logger.finish()
return best_metric
def __set_seed(self, seed_value: int):
"""Manually set random seeds.
Args:
seed_value (int): random seed
"""
random.seed(seed_value)
np.random.seed(seed_value)
torch.manual_seed(seed_value)
torch.random.manual_seed(seed_value)
os.environ['PYTHONHASHSEED'] = str(seed_value)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed_value)
torch.cuda.manual_seed_all(seed_value)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
return
def __evaluate(self, model, dataloader):
model.eval()
inps = InputData()
outputs = OutputData()
for data in dataloader:
torch.cuda.empty_cache()
output = model(data)
if self.accelerator is not None and hasattr(self.model, "module"):
decode_output = model.module.decode(output, data)
else:
decode_output = model.decode(output, data)
decode_output.map_output(slot_map=self.slot_list,
intent_map=self.intent_list)
data, decode_output = utils.remove_slot_ignore_index(
data, decode_output, ignore_index="#")
inps.merge_input_data(data)
outputs.merge_output_data(decode_output)
if "metric" in self.config:
res = Evaluator.compute_all_metric(
inps, outputs, intent_label_map=self.intent_dict, metric_list=self.config.metric)
else:
res = Evaluator.compute_all_metric(
inps, outputs, intent_label_map=self.intent_dict)
model.train()
return outputs, res
def load(self):
self.model = torch.load(os.path.join(self.config.base["model_dir"], "model.pkl"),map_location=self.config.base["device"])
if self.config.tokenizer["_tokenizer_name_"] == "word_tokenizer":
self.tokenizer = get_tokenizer_class(self.config.tokenizer["_tokenizer_name_"]).from_file(
os.path.join(self.config.base["model_dir"], "tokenizer.json"))
else:
self.tokenizer = get_tokenizer(self.config.tokenizer["_tokenizer_name_"])
self.model.to(self.device)
label = utils.load_json(os.path.join(self.config.base["model_dir"], "label.json"))
self.intent_list = label["intent"]
self.slot_list = label["slot"]
self.data_factory=DataFactory(tokenizer=self.tokenizer,
use_multi_intent=self.config.base.get("multi_intent"),
to_lower_case=self.config.tokenizer.get("_to_lower_case_"))
def predict(self, text_data):
self.model.eval()
tokenizer_config = {key: self.config.tokenizer[key]
for key in self.config.tokenizer if key[0] != "_" and key[-1] != "_"}
align_mode = self.config.tokenizer.get("_align_mode_")
inputs = self.data_factory.batch_fn(batch=[{"text": text_data.split(" ")}],
device=self.device,
config=tokenizer_config,
enable_label=False,
align_mode= align_mode if align_mode is not None else "general",
label2tensor=False)
output = self.model(inputs)
decode_output = self.model.decode(output, inputs)
decode_output.map_output(slot_map=self.slot_list,
intent_map=self.intent_list)
if self.config.base.get("multi_intent"):
intent = decode_output.intent_ids[0]
else:
intent = [decode_output.intent_ids[0]]
return {"intent": intent, "slot": decode_output.slot_ids[0], "text": self.tokenizer.decode(inputs.input_ids[0])}