Spaces:
Runtime error
Runtime error
File size: 15,810 Bytes
bab7439 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
'''
Author: Qiguang Chen
Date: 2023-01-11 10:39:26
LastEditors: Qiguang Chen
LastEditTime: 2023-02-08 00:42:56
Description: manage all process of model training and prediction.
'''
import os
import random
import numpy as np
import torch
from tqdm import tqdm
from common import utils
from common.loader import DataFactory
from common.logger import Logger
from common.metric import Evaluator
from common.tokenizer import get_tokenizer, get_tokenizer_class, load_embedding
from common.utils import InputData, instantiate
from common.utils import OutputData
from common.config import Config
import dill
class ModelManager(object):
def __init__(self, config: Config):
"""create model manager by config
Args:
config (Config): configuration to manage all process in OpenSLU
"""
# init config
self.config = config
self.__set_seed(self.config.base.get("seed"))
self.device = self.config.base.get("device")
# enable accelerator
if "accelerator" in self.config and self.config["accelerator"].get("use_accelerator"):
from accelerate import Accelerator
self.accelerator = Accelerator(log_with="wandb")
else:
self.accelerator = None
if self.config.base.get("train"):
self.tokenizer = get_tokenizer(
self.config.tokenizer.get("_tokenizer_name_"))
self.logger = Logger(
"wandb", self.config.base["name"], start_time=config.start_time, accelerator=self.accelerator)
# init dataloader & load data
if self.config.base.get("save_dir"):
self.model_save_dir = self.config.base["save_dir"]
else:
if not os.path.exists("save/"):
os.mkdir("save/")
self.model_save_dir = "save/" + config.start_time
if not os.path.exists(self.model_save_dir):
os.mkdir(self.model_save_dir)
batch_size = self.config.base["batch_size"]
df = DataFactory(tokenizer=self.tokenizer,
use_multi_intent=self.config.base.get("multi_intent"),
to_lower_case=self.config.base.get("_to_lower_case_"))
train_dataset = df.load_dataset(self.config.dataset, split="train")
# update label and vocabulary
df.update_label_names(train_dataset)
df.update_vocabulary(train_dataset)
# init tokenizer config and dataloaders
tokenizer_config = {key: self.config.tokenizer[key]
for key in self.config.tokenizer if key[0] != "_" and key[-1] != "_"}
self.train_dataloader = df.get_data_loader(train_dataset,
batch_size,
shuffle=True,
device=self.device,
enable_label=True,
align_mode=self.config.tokenizer.get(
"_align_mode_"),
label2tensor=True,
**tokenizer_config)
dev_dataset = df.load_dataset(
self.config.dataset, split="validation")
self.dev_dataloader = df.get_data_loader(dev_dataset,
batch_size,
shuffle=False,
device=self.device,
enable_label=True,
align_mode=self.config.tokenizer.get(
"_align_mode_"),
label2tensor=False,
**tokenizer_config)
df.update_vocabulary(dev_dataset)
# add intent label num and slot label num to config
if int(self.config.get_intent_label_num()) == 0 or int(self.config.get_slot_label_num()) == 0:
self.intent_list = df.intent_label_list
self.intent_dict = df.intent_label_dict
self.config.set_intent_label_num(len(self.intent_list))
self.slot_list = df.slot_label_list
self.slot_dict = df.slot_label_dict
self.config.set_slot_label_num(len(self.slot_list))
self.config.set_vocab_size(self.tokenizer.vocab_size)
# autoload embedding for non-pretrained encoder
if self.config["model"]["encoder"].get("embedding") and self.config["model"]["encoder"]["embedding"].get(
"load_embedding_name"):
self.config["model"]["encoder"]["embedding"]["embedding_matrix"] = load_embedding(self.tokenizer,
self.config["model"][
"encoder"][
"embedding"].get(
"load_embedding_name"))
# fill template in config
self.config.autoload_template()
# save config
self.logger.set_config(self.config)
self.model = None
self.optimizer = None
self.total_step = None
self.lr_scheduler = None
if self.config.tokenizer.get("_tokenizer_name_") == "word_tokenizer":
self.tokenizer.save(os.path.join(self.model_save_dir, "tokenizer.json"))
utils.save_json(os.path.join(
self.model_save_dir, "label.json"), {"intent": self.intent_list,"slot": self.slot_list})
if self.config.base.get("test"):
self.test_dataset = df.load_dataset(
self.config.dataset, split="test")
self.test_dataloader = df.get_data_loader(self.test_dataset,
batch_size,
shuffle=False,
device=self.device,
enable_label=True,
align_mode=self.config.tokenizer.get(
"_align_mode_"),
label2tensor=False,
**tokenizer_config)
def init_model(self, model):
"""init model, optimizer, lr_scheduler
Args:
model (Any): pytorch model
"""
self.model = model
self.model.to(self.device)
if self.config.base.get("train"):
self.optimizer = instantiate(
self.config["optimizer"])(self.model.parameters())
self.total_step = int(self.config.base.get(
"epoch_num")) * len(self.train_dataloader)
self.lr_scheduler = instantiate(self.config["scheduler"])(
optimizer=self.optimizer,
num_training_steps=self.total_step
)
if self.accelerator is not None:
self.model, self.optimizer, self.train_dataloader, self.lr_scheduler = self.accelerator.prepare(
self.model, self.optimizer, self.train_dataloader, self.lr_scheduler)
if self.config.base.get("load_dir_path"):
self.accelerator.load_state(self.config.base.get("load_dir_path"))
# self.dev_dataloader = self.accelerator.prepare(self.dev_dataloader)
def eval(self, step: int, best_metric: float) -> float:
""" evaluation models.
Args:
step (int): which step the model has trained in
best_metric (float): last best metric value to judge whether to test or save model
Returns:
float: updated best metric value
"""
# TODO: save dev
_, res = self.__evaluate(self.model, self.dev_dataloader)
self.logger.log_metric(res, metric_split="dev", step=step)
if res[self.config.base.get("best_key")] > best_metric:
best_metric = res[self.config.base.get("best_key")]
outputs, test_res = self.__evaluate(
self.model, self.test_dataloader)
if not os.path.exists(self.model_save_dir):
os.mkdir(self.model_save_dir)
if self.accelerator is None:
torch.save(self.model, os.path.join(
self.model_save_dir, "model.pkl"))
torch.save(self.optimizer, os.path.join(
self.model_save_dir, "optimizer.pkl"))
torch.save(self.lr_scheduler, os.path.join(
self.model_save_dir, "lr_scheduler.pkl"), pickle_module=dill)
torch.save(step, os.path.join(
self.model_save_dir, "step.pkl"))
else:
self.accelerator.wait_for_everyone()
unwrapped_model = self.accelerator.unwrap_model(self.model)
self.accelerator.save(unwrapped_model.state_dict(
), os.path.join(self.model_save_dir, "model.pkl"))
self.accelerator.save_state(output_dir=self.model_save_dir)
outputs.save(self.model_save_dir, self.test_dataset)
self.logger.log_metric(test_res, metric_split="test", step=step)
return best_metric
def train(self) -> float:
""" train models.
Returns:
float: updated best metric value
"""
step = 0
best_metric = 0
progress_bar = tqdm(range(self.total_step))
for _ in range(int(self.config.base.get("epoch_num"))):
for data in self.train_dataloader:
if step == 0:
self.logger.info(data.get_item(
0, tokenizer=self.tokenizer, intent_map=self.intent_list, slot_map=self.slot_list))
output = self.model(data)
if self.accelerator is not None and hasattr(self.model, "module"):
loss, intent_loss, slot_loss = self.model.module.compute_loss(
pred=output, target=data)
else:
loss, intent_loss, slot_loss = self.model.compute_loss(
pred=output, target=data)
self.logger.log_loss(loss, "Loss", step=step)
self.logger.log_loss(intent_loss, "Intent Loss", step=step)
self.logger.log_loss(slot_loss, "Slot Loss", step=step)
self.optimizer.zero_grad()
if self.accelerator is not None:
self.accelerator.backward(loss)
else:
loss.backward()
self.optimizer.step()
self.lr_scheduler.step()
if not self.config.base.get("eval_by_epoch") and step % self.config.base.get(
"eval_step") == 0 and step != 0:
best_metric = self.eval(step, best_metric)
step += 1
progress_bar.update(1)
if self.config.base.get("eval_by_epoch"):
best_metric = self.eval(step, best_metric)
self.logger.finish()
return best_metric
def __set_seed(self, seed_value: int):
"""Manually set random seeds.
Args:
seed_value (int): random seed
"""
random.seed(seed_value)
np.random.seed(seed_value)
torch.manual_seed(seed_value)
torch.random.manual_seed(seed_value)
os.environ['PYTHONHASHSEED'] = str(seed_value)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed_value)
torch.cuda.manual_seed_all(seed_value)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
return
def __evaluate(self, model, dataloader):
model.eval()
inps = InputData()
outputs = OutputData()
for data in dataloader:
torch.cuda.empty_cache()
output = model(data)
if self.accelerator is not None and hasattr(self.model, "module"):
decode_output = model.module.decode(output, data)
else:
decode_output = model.decode(output, data)
decode_output.map_output(slot_map=self.slot_list,
intent_map=self.intent_list)
data, decode_output = utils.remove_slot_ignore_index(
data, decode_output, ignore_index="#")
inps.merge_input_data(data)
outputs.merge_output_data(decode_output)
if "metric" in self.config:
res = Evaluator.compute_all_metric(
inps, outputs, intent_label_map=self.intent_dict, metric_list=self.config.metric)
else:
res = Evaluator.compute_all_metric(
inps, outputs, intent_label_map=self.intent_dict)
model.train()
return outputs, res
def load(self):
self.model = torch.load(os.path.join(self.config.base["model_dir"], "model.pkl"),map_location=self.config.base["device"])
if self.config.tokenizer["_tokenizer_name_"] == "word_tokenizer":
self.tokenizer = get_tokenizer_class(self.config.tokenizer["_tokenizer_name_"]).from_file(
os.path.join(self.config.base["model_dir"], "tokenizer.json"))
else:
self.tokenizer = get_tokenizer(self.config.tokenizer["_tokenizer_name_"])
self.model.to(self.device)
label = utils.load_json(os.path.join(self.config.base["model_dir"], "label.json"))
self.intent_list = label["intent"]
self.slot_list = label["slot"]
self.data_factory=DataFactory(tokenizer=self.tokenizer,
use_multi_intent=self.config.base.get("multi_intent"),
to_lower_case=self.config.tokenizer.get("_to_lower_case_"))
def predict(self, text_data):
self.model.eval()
tokenizer_config = {key: self.config.tokenizer[key]
for key in self.config.tokenizer if key[0] != "_" and key[-1] != "_"}
align_mode = self.config.tokenizer.get("_align_mode_")
inputs = self.data_factory.batch_fn(batch=[{"text": text_data.split(" ")}],
device=self.device,
config=tokenizer_config,
enable_label=False,
align_mode= align_mode if align_mode is not None else "general",
label2tensor=False)
output = self.model(inputs)
decode_output = self.model.decode(output, inputs)
decode_output.map_output(slot_map=self.slot_list,
intent_map=self.intent_list)
if self.config.base.get("multi_intent"):
intent = decode_output.intent_ids[0]
else:
intent = [decode_output.intent_ids[0]]
return {"intent": intent, "slot": decode_output.slot_ids[0], "text": self.tokenizer.decode(inputs.input_ids[0])} |