Spaces:
Runtime error
Runtime error
LightChen2333
commited on
Commit
·
bab7439
1
Parent(s):
89c300b
Upload model_manager.py
Browse files- model_manager.py +324 -0
model_manager.py
ADDED
@@ -0,0 +1,324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
Author: Qiguang Chen
|
3 |
+
Date: 2023-01-11 10:39:26
|
4 |
+
LastEditors: Qiguang Chen
|
5 |
+
LastEditTime: 2023-02-08 00:42:56
|
6 |
+
Description: manage all process of model training and prediction.
|
7 |
+
|
8 |
+
'''
|
9 |
+
import os
|
10 |
+
import random
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
import torch
|
14 |
+
from tqdm import tqdm
|
15 |
+
|
16 |
+
|
17 |
+
from common import utils
|
18 |
+
from common.loader import DataFactory
|
19 |
+
from common.logger import Logger
|
20 |
+
from common.metric import Evaluator
|
21 |
+
from common.tokenizer import get_tokenizer, get_tokenizer_class, load_embedding
|
22 |
+
from common.utils import InputData, instantiate
|
23 |
+
from common.utils import OutputData
|
24 |
+
from common.config import Config
|
25 |
+
import dill
|
26 |
+
|
27 |
+
|
28 |
+
class ModelManager(object):
|
29 |
+
def __init__(self, config: Config):
|
30 |
+
"""create model manager by config
|
31 |
+
|
32 |
+
Args:
|
33 |
+
config (Config): configuration to manage all process in OpenSLU
|
34 |
+
"""
|
35 |
+
# init config
|
36 |
+
self.config = config
|
37 |
+
self.__set_seed(self.config.base.get("seed"))
|
38 |
+
self.device = self.config.base.get("device")
|
39 |
+
|
40 |
+
# enable accelerator
|
41 |
+
if "accelerator" in self.config and self.config["accelerator"].get("use_accelerator"):
|
42 |
+
from accelerate import Accelerator
|
43 |
+
self.accelerator = Accelerator(log_with="wandb")
|
44 |
+
else:
|
45 |
+
self.accelerator = None
|
46 |
+
if self.config.base.get("train"):
|
47 |
+
self.tokenizer = get_tokenizer(
|
48 |
+
self.config.tokenizer.get("_tokenizer_name_"))
|
49 |
+
self.logger = Logger(
|
50 |
+
"wandb", self.config.base["name"], start_time=config.start_time, accelerator=self.accelerator)
|
51 |
+
|
52 |
+
# init dataloader & load data
|
53 |
+
if self.config.base.get("save_dir"):
|
54 |
+
self.model_save_dir = self.config.base["save_dir"]
|
55 |
+
else:
|
56 |
+
if not os.path.exists("save/"):
|
57 |
+
os.mkdir("save/")
|
58 |
+
self.model_save_dir = "save/" + config.start_time
|
59 |
+
if not os.path.exists(self.model_save_dir):
|
60 |
+
os.mkdir(self.model_save_dir)
|
61 |
+
batch_size = self.config.base["batch_size"]
|
62 |
+
df = DataFactory(tokenizer=self.tokenizer,
|
63 |
+
use_multi_intent=self.config.base.get("multi_intent"),
|
64 |
+
to_lower_case=self.config.base.get("_to_lower_case_"))
|
65 |
+
train_dataset = df.load_dataset(self.config.dataset, split="train")
|
66 |
+
|
67 |
+
# update label and vocabulary
|
68 |
+
df.update_label_names(train_dataset)
|
69 |
+
df.update_vocabulary(train_dataset)
|
70 |
+
|
71 |
+
# init tokenizer config and dataloaders
|
72 |
+
tokenizer_config = {key: self.config.tokenizer[key]
|
73 |
+
for key in self.config.tokenizer if key[0] != "_" and key[-1] != "_"}
|
74 |
+
self.train_dataloader = df.get_data_loader(train_dataset,
|
75 |
+
batch_size,
|
76 |
+
shuffle=True,
|
77 |
+
device=self.device,
|
78 |
+
enable_label=True,
|
79 |
+
align_mode=self.config.tokenizer.get(
|
80 |
+
"_align_mode_"),
|
81 |
+
label2tensor=True,
|
82 |
+
**tokenizer_config)
|
83 |
+
dev_dataset = df.load_dataset(
|
84 |
+
self.config.dataset, split="validation")
|
85 |
+
self.dev_dataloader = df.get_data_loader(dev_dataset,
|
86 |
+
batch_size,
|
87 |
+
shuffle=False,
|
88 |
+
device=self.device,
|
89 |
+
enable_label=True,
|
90 |
+
align_mode=self.config.tokenizer.get(
|
91 |
+
"_align_mode_"),
|
92 |
+
label2tensor=False,
|
93 |
+
**tokenizer_config)
|
94 |
+
df.update_vocabulary(dev_dataset)
|
95 |
+
# add intent label num and slot label num to config
|
96 |
+
if int(self.config.get_intent_label_num()) == 0 or int(self.config.get_slot_label_num()) == 0:
|
97 |
+
self.intent_list = df.intent_label_list
|
98 |
+
self.intent_dict = df.intent_label_dict
|
99 |
+
self.config.set_intent_label_num(len(self.intent_list))
|
100 |
+
self.slot_list = df.slot_label_list
|
101 |
+
self.slot_dict = df.slot_label_dict
|
102 |
+
self.config.set_slot_label_num(len(self.slot_list))
|
103 |
+
self.config.set_vocab_size(self.tokenizer.vocab_size)
|
104 |
+
|
105 |
+
# autoload embedding for non-pretrained encoder
|
106 |
+
if self.config["model"]["encoder"].get("embedding") and self.config["model"]["encoder"]["embedding"].get(
|
107 |
+
"load_embedding_name"):
|
108 |
+
self.config["model"]["encoder"]["embedding"]["embedding_matrix"] = load_embedding(self.tokenizer,
|
109 |
+
self.config["model"][
|
110 |
+
"encoder"][
|
111 |
+
"embedding"].get(
|
112 |
+
"load_embedding_name"))
|
113 |
+
# fill template in config
|
114 |
+
self.config.autoload_template()
|
115 |
+
# save config
|
116 |
+
self.logger.set_config(self.config)
|
117 |
+
|
118 |
+
self.model = None
|
119 |
+
self.optimizer = None
|
120 |
+
self.total_step = None
|
121 |
+
self.lr_scheduler = None
|
122 |
+
if self.config.tokenizer.get("_tokenizer_name_") == "word_tokenizer":
|
123 |
+
self.tokenizer.save(os.path.join(self.model_save_dir, "tokenizer.json"))
|
124 |
+
utils.save_json(os.path.join(
|
125 |
+
self.model_save_dir, "label.json"), {"intent": self.intent_list,"slot": self.slot_list})
|
126 |
+
if self.config.base.get("test"):
|
127 |
+
self.test_dataset = df.load_dataset(
|
128 |
+
self.config.dataset, split="test")
|
129 |
+
self.test_dataloader = df.get_data_loader(self.test_dataset,
|
130 |
+
batch_size,
|
131 |
+
shuffle=False,
|
132 |
+
device=self.device,
|
133 |
+
enable_label=True,
|
134 |
+
align_mode=self.config.tokenizer.get(
|
135 |
+
"_align_mode_"),
|
136 |
+
label2tensor=False,
|
137 |
+
**tokenizer_config)
|
138 |
+
|
139 |
+
def init_model(self, model):
|
140 |
+
"""init model, optimizer, lr_scheduler
|
141 |
+
|
142 |
+
Args:
|
143 |
+
model (Any): pytorch model
|
144 |
+
"""
|
145 |
+
self.model = model
|
146 |
+
self.model.to(self.device)
|
147 |
+
if self.config.base.get("train"):
|
148 |
+
self.optimizer = instantiate(
|
149 |
+
self.config["optimizer"])(self.model.parameters())
|
150 |
+
self.total_step = int(self.config.base.get(
|
151 |
+
"epoch_num")) * len(self.train_dataloader)
|
152 |
+
self.lr_scheduler = instantiate(self.config["scheduler"])(
|
153 |
+
optimizer=self.optimizer,
|
154 |
+
num_training_steps=self.total_step
|
155 |
+
)
|
156 |
+
if self.accelerator is not None:
|
157 |
+
self.model, self.optimizer, self.train_dataloader, self.lr_scheduler = self.accelerator.prepare(
|
158 |
+
self.model, self.optimizer, self.train_dataloader, self.lr_scheduler)
|
159 |
+
if self.config.base.get("load_dir_path"):
|
160 |
+
self.accelerator.load_state(self.config.base.get("load_dir_path"))
|
161 |
+
# self.dev_dataloader = self.accelerator.prepare(self.dev_dataloader)
|
162 |
+
|
163 |
+
def eval(self, step: int, best_metric: float) -> float:
|
164 |
+
""" evaluation models.
|
165 |
+
|
166 |
+
Args:
|
167 |
+
step (int): which step the model has trained in
|
168 |
+
best_metric (float): last best metric value to judge whether to test or save model
|
169 |
+
|
170 |
+
Returns:
|
171 |
+
float: updated best metric value
|
172 |
+
"""
|
173 |
+
# TODO: save dev
|
174 |
+
_, res = self.__evaluate(self.model, self.dev_dataloader)
|
175 |
+
self.logger.log_metric(res, metric_split="dev", step=step)
|
176 |
+
if res[self.config.base.get("best_key")] > best_metric:
|
177 |
+
best_metric = res[self.config.base.get("best_key")]
|
178 |
+
outputs, test_res = self.__evaluate(
|
179 |
+
self.model, self.test_dataloader)
|
180 |
+
if not os.path.exists(self.model_save_dir):
|
181 |
+
os.mkdir(self.model_save_dir)
|
182 |
+
if self.accelerator is None:
|
183 |
+
torch.save(self.model, os.path.join(
|
184 |
+
self.model_save_dir, "model.pkl"))
|
185 |
+
torch.save(self.optimizer, os.path.join(
|
186 |
+
self.model_save_dir, "optimizer.pkl"))
|
187 |
+
torch.save(self.lr_scheduler, os.path.join(
|
188 |
+
self.model_save_dir, "lr_scheduler.pkl"), pickle_module=dill)
|
189 |
+
torch.save(step, os.path.join(
|
190 |
+
self.model_save_dir, "step.pkl"))
|
191 |
+
else:
|
192 |
+
self.accelerator.wait_for_everyone()
|
193 |
+
unwrapped_model = self.accelerator.unwrap_model(self.model)
|
194 |
+
self.accelerator.save(unwrapped_model.state_dict(
|
195 |
+
), os.path.join(self.model_save_dir, "model.pkl"))
|
196 |
+
self.accelerator.save_state(output_dir=self.model_save_dir)
|
197 |
+
outputs.save(self.model_save_dir, self.test_dataset)
|
198 |
+
self.logger.log_metric(test_res, metric_split="test", step=step)
|
199 |
+
return best_metric
|
200 |
+
|
201 |
+
def train(self) -> float:
|
202 |
+
""" train models.
|
203 |
+
|
204 |
+
Returns:
|
205 |
+
float: updated best metric value
|
206 |
+
"""
|
207 |
+
step = 0
|
208 |
+
best_metric = 0
|
209 |
+
progress_bar = tqdm(range(self.total_step))
|
210 |
+
for _ in range(int(self.config.base.get("epoch_num"))):
|
211 |
+
for data in self.train_dataloader:
|
212 |
+
if step == 0:
|
213 |
+
self.logger.info(data.get_item(
|
214 |
+
0, tokenizer=self.tokenizer, intent_map=self.intent_list, slot_map=self.slot_list))
|
215 |
+
output = self.model(data)
|
216 |
+
if self.accelerator is not None and hasattr(self.model, "module"):
|
217 |
+
loss, intent_loss, slot_loss = self.model.module.compute_loss(
|
218 |
+
pred=output, target=data)
|
219 |
+
else:
|
220 |
+
loss, intent_loss, slot_loss = self.model.compute_loss(
|
221 |
+
pred=output, target=data)
|
222 |
+
self.logger.log_loss(loss, "Loss", step=step)
|
223 |
+
self.logger.log_loss(intent_loss, "Intent Loss", step=step)
|
224 |
+
self.logger.log_loss(slot_loss, "Slot Loss", step=step)
|
225 |
+
self.optimizer.zero_grad()
|
226 |
+
|
227 |
+
if self.accelerator is not None:
|
228 |
+
self.accelerator.backward(loss)
|
229 |
+
else:
|
230 |
+
loss.backward()
|
231 |
+
self.optimizer.step()
|
232 |
+
self.lr_scheduler.step()
|
233 |
+
if not self.config.base.get("eval_by_epoch") and step % self.config.base.get(
|
234 |
+
"eval_step") == 0 and step != 0:
|
235 |
+
best_metric = self.eval(step, best_metric)
|
236 |
+
step += 1
|
237 |
+
progress_bar.update(1)
|
238 |
+
if self.config.base.get("eval_by_epoch"):
|
239 |
+
best_metric = self.eval(step, best_metric)
|
240 |
+
self.logger.finish()
|
241 |
+
return best_metric
|
242 |
+
|
243 |
+
def __set_seed(self, seed_value: int):
|
244 |
+
"""Manually set random seeds.
|
245 |
+
|
246 |
+
Args:
|
247 |
+
seed_value (int): random seed
|
248 |
+
"""
|
249 |
+
random.seed(seed_value)
|
250 |
+
np.random.seed(seed_value)
|
251 |
+
torch.manual_seed(seed_value)
|
252 |
+
torch.random.manual_seed(seed_value)
|
253 |
+
os.environ['PYTHONHASHSEED'] = str(seed_value)
|
254 |
+
if torch.cuda.is_available():
|
255 |
+
torch.cuda.manual_seed(seed_value)
|
256 |
+
torch.cuda.manual_seed_all(seed_value)
|
257 |
+
torch.backends.cudnn.deterministic = True
|
258 |
+
torch.backends.cudnn.benchmark = True
|
259 |
+
return
|
260 |
+
|
261 |
+
def __evaluate(self, model, dataloader):
|
262 |
+
model.eval()
|
263 |
+
inps = InputData()
|
264 |
+
outputs = OutputData()
|
265 |
+
for data in dataloader:
|
266 |
+
torch.cuda.empty_cache()
|
267 |
+
output = model(data)
|
268 |
+
if self.accelerator is not None and hasattr(self.model, "module"):
|
269 |
+
decode_output = model.module.decode(output, data)
|
270 |
+
else:
|
271 |
+
decode_output = model.decode(output, data)
|
272 |
+
|
273 |
+
decode_output.map_output(slot_map=self.slot_list,
|
274 |
+
intent_map=self.intent_list)
|
275 |
+
data, decode_output = utils.remove_slot_ignore_index(
|
276 |
+
data, decode_output, ignore_index="#")
|
277 |
+
|
278 |
+
inps.merge_input_data(data)
|
279 |
+
outputs.merge_output_data(decode_output)
|
280 |
+
if "metric" in self.config:
|
281 |
+
res = Evaluator.compute_all_metric(
|
282 |
+
inps, outputs, intent_label_map=self.intent_dict, metric_list=self.config.metric)
|
283 |
+
else:
|
284 |
+
res = Evaluator.compute_all_metric(
|
285 |
+
inps, outputs, intent_label_map=self.intent_dict)
|
286 |
+
model.train()
|
287 |
+
return outputs, res
|
288 |
+
|
289 |
+
def load(self):
|
290 |
+
|
291 |
+
self.model = torch.load(os.path.join(self.config.base["model_dir"], "model.pkl"),map_location=self.config.base["device"])
|
292 |
+
if self.config.tokenizer["_tokenizer_name_"] == "word_tokenizer":
|
293 |
+
self.tokenizer = get_tokenizer_class(self.config.tokenizer["_tokenizer_name_"]).from_file(
|
294 |
+
os.path.join(self.config.base["model_dir"], "tokenizer.json"))
|
295 |
+
else:
|
296 |
+
self.tokenizer = get_tokenizer(self.config.tokenizer["_tokenizer_name_"])
|
297 |
+
self.model.to(self.device)
|
298 |
+
label = utils.load_json(os.path.join(self.config.base["model_dir"], "label.json"))
|
299 |
+
self.intent_list = label["intent"]
|
300 |
+
self.slot_list = label["slot"]
|
301 |
+
self.data_factory=DataFactory(tokenizer=self.tokenizer,
|
302 |
+
use_multi_intent=self.config.base.get("multi_intent"),
|
303 |
+
to_lower_case=self.config.tokenizer.get("_to_lower_case_"))
|
304 |
+
|
305 |
+
def predict(self, text_data):
|
306 |
+
self.model.eval()
|
307 |
+
tokenizer_config = {key: self.config.tokenizer[key]
|
308 |
+
for key in self.config.tokenizer if key[0] != "_" and key[-1] != "_"}
|
309 |
+
align_mode = self.config.tokenizer.get("_align_mode_")
|
310 |
+
inputs = self.data_factory.batch_fn(batch=[{"text": text_data.split(" ")}],
|
311 |
+
device=self.device,
|
312 |
+
config=tokenizer_config,
|
313 |
+
enable_label=False,
|
314 |
+
align_mode= align_mode if align_mode is not None else "general",
|
315 |
+
label2tensor=False)
|
316 |
+
output = self.model(inputs)
|
317 |
+
decode_output = self.model.decode(output, inputs)
|
318 |
+
decode_output.map_output(slot_map=self.slot_list,
|
319 |
+
intent_map=self.intent_list)
|
320 |
+
if self.config.base.get("multi_intent"):
|
321 |
+
intent = decode_output.intent_ids[0]
|
322 |
+
else:
|
323 |
+
intent = [decode_output.intent_ids[0]]
|
324 |
+
return {"intent": intent, "slot": decode_output.slot_ids[0], "text": self.tokenizer.decode(inputs.input_ids[0])}
|