|
|
|
|
|
|
|
|
|
import math |
|
from loguru import logger |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
|
|
from .losses import IOUloss |
|
from .network_blocks import BaseConv, DWConv |
|
|
|
|
|
def bboxes_iou(bboxes_a, bboxes_b, xyxy=True): |
|
if bboxes_a.shape[1] != 4 or bboxes_b.shape[1] != 4: |
|
raise IndexError |
|
|
|
if xyxy: |
|
tl = torch.max(bboxes_a[:, None, :2], bboxes_b[:, :2]) |
|
br = torch.min(bboxes_a[:, None, 2:], bboxes_b[:, 2:]) |
|
area_a = torch.prod(bboxes_a[:, 2:] - bboxes_a[:, :2], 1) |
|
area_b = torch.prod(bboxes_b[:, 2:] - bboxes_b[:, :2], 1) |
|
else: |
|
tl = torch.max( |
|
(bboxes_a[:, None, :2] - bboxes_a[:, None, 2:] / 2), |
|
(bboxes_b[:, :2] - bboxes_b[:, 2:] / 2), |
|
) |
|
br = torch.min( |
|
(bboxes_a[:, None, :2] + bboxes_a[:, None, 2:] / 2), |
|
(bboxes_b[:, :2] + bboxes_b[:, 2:] / 2), |
|
) |
|
|
|
area_a = torch.prod(bboxes_a[:, 2:], 1) |
|
area_b = torch.prod(bboxes_b[:, 2:], 1) |
|
en = (tl < br).type(tl.type()).prod(dim=2) |
|
area_i = torch.prod(br - tl, 2) * en |
|
return area_i / (area_a[:, None] + area_b - area_i) |
|
|
|
|
|
class YOLOXHead(nn.Module): |
|
def __init__( |
|
self, |
|
num_classes, |
|
width=1.0, |
|
strides=[8, 16, 32], |
|
in_channels=[256, 512, 1024], |
|
act="silu", |
|
depthwise=False, |
|
): |
|
""" |
|
Args: |
|
act (str): activation type of conv. Defalut value: "silu". |
|
depthwise (bool): whether apply depthwise conv in conv branch. Defalut value: False. |
|
""" |
|
super().__init__() |
|
|
|
self.n_anchors = 1 |
|
self.num_classes = num_classes |
|
self.decode_in_inference = True |
|
|
|
self.cls_convs = nn.ModuleList() |
|
self.reg_convs = nn.ModuleList() |
|
self.cls_preds = nn.ModuleList() |
|
self.reg_preds = nn.ModuleList() |
|
self.obj_preds = nn.ModuleList() |
|
self.stems = nn.ModuleList() |
|
Conv = DWConv if depthwise else BaseConv |
|
|
|
for i in range(len(in_channels)): |
|
self.stems.append( |
|
BaseConv( |
|
in_channels=int(in_channels[i] * width), |
|
out_channels=int(256 * width), |
|
ksize=1, |
|
stride=1, |
|
act=act, |
|
) |
|
) |
|
self.cls_convs.append( |
|
nn.Sequential( |
|
*[ |
|
Conv( |
|
in_channels=int(256 * width), |
|
out_channels=int(256 * width), |
|
ksize=3, |
|
stride=1, |
|
act=act, |
|
), |
|
Conv( |
|
in_channels=int(256 * width), |
|
out_channels=int(256 * width), |
|
ksize=3, |
|
stride=1, |
|
act=act, |
|
), |
|
] |
|
) |
|
) |
|
self.reg_convs.append( |
|
nn.Sequential( |
|
*[ |
|
Conv( |
|
in_channels=int(256 * width), |
|
out_channels=int(256 * width), |
|
ksize=3, |
|
stride=1, |
|
act=act, |
|
), |
|
Conv( |
|
in_channels=int(256 * width), |
|
out_channels=int(256 * width), |
|
ksize=3, |
|
stride=1, |
|
act=act, |
|
), |
|
] |
|
) |
|
) |
|
self.cls_preds.append( |
|
nn.Conv2d( |
|
in_channels=int(256 * width), |
|
out_channels=self.n_anchors * self.num_classes, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
) |
|
) |
|
self.reg_preds.append( |
|
nn.Conv2d( |
|
in_channels=int(256 * width), |
|
out_channels=4, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
) |
|
) |
|
self.obj_preds.append( |
|
nn.Conv2d( |
|
in_channels=int(256 * width), |
|
out_channels=self.n_anchors * 1, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
) |
|
) |
|
|
|
self.use_l1 = False |
|
self.l1_loss = nn.L1Loss(reduction="none") |
|
self.bcewithlog_loss = nn.BCEWithLogitsLoss(reduction="none") |
|
self.iou_loss = IOUloss(reduction="none") |
|
self.strides = strides |
|
self.grids = [torch.zeros(1)] * len(in_channels) |
|
|
|
def initialize_biases(self, prior_prob): |
|
for conv in self.cls_preds: |
|
b = conv.bias.view(self.n_anchors, -1) |
|
b.data.fill_(-math.log((1 - prior_prob) / prior_prob)) |
|
conv.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) |
|
|
|
for conv in self.obj_preds: |
|
b = conv.bias.view(self.n_anchors, -1) |
|
b.data.fill_(-math.log((1 - prior_prob) / prior_prob)) |
|
conv.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) |
|
|
|
def forward(self, xin, labels=None, imgs=None): |
|
if isinstance(xin, list): |
|
xin, labels, imgs = xin[0], xin[1], xin[2] |
|
|
|
outputs = [] |
|
origin_preds = [] |
|
x_shifts = [] |
|
y_shifts = [] |
|
expanded_strides = [] |
|
|
|
for k, (cls_conv, reg_conv, stride_this_level, x) in enumerate( |
|
zip(self.cls_convs, self.reg_convs, self.strides, xin) |
|
): |
|
x = self.stems[k](x) |
|
cls_x = x |
|
reg_x = x |
|
|
|
cls_feat = cls_conv(cls_x) |
|
cls_output = self.cls_preds[k](cls_feat) |
|
|
|
|
|
reg_feat = reg_conv(reg_x) |
|
reg_output = self.reg_preds[k](reg_feat) |
|
obj_output = self.obj_preds[k](reg_feat) |
|
|
|
|
|
if labels is not None: |
|
output = torch.cat([reg_output, obj_output, cls_output], 1) |
|
output, grid = self.get_output_and_grid( |
|
output, k, stride_this_level, xin[0].type() |
|
) |
|
x_shifts.append(grid[:, :, 0]) |
|
y_shifts.append(grid[:, :, 1]) |
|
expanded_strides.append( |
|
torch.zeros(1, grid.shape[1]) |
|
.fill_(stride_this_level) |
|
.type_as(xin[0]) |
|
) |
|
if self.use_l1: |
|
batch_size = reg_output.shape[0] |
|
hsize, wsize = reg_output.shape[-2:] |
|
reg_output = reg_output.view( |
|
batch_size, self.n_anchors, 4, hsize, wsize |
|
) |
|
reg_output = reg_output.permute(0, 1, 3, 4, 2).reshape( |
|
batch_size, -1, 4 |
|
) |
|
origin_preds.append(reg_output.clone()) |
|
|
|
else: |
|
output = torch.cat( |
|
[reg_output, obj_output.sigmoid(), cls_output.sigmoid()], 1 |
|
) |
|
|
|
outputs.append(output) |
|
|
|
|
|
if labels is not None: |
|
return self.get_losses( |
|
imgs, |
|
x_shifts, |
|
y_shifts, |
|
expanded_strides, |
|
labels, |
|
torch.cat(outputs, 1), |
|
origin_preds, |
|
dtype=xin[0].dtype, |
|
) |
|
else: |
|
self.hw = [x.shape[-2:] for x in outputs] |
|
|
|
outputs = torch.cat( |
|
[x.flatten(start_dim=2) for x in outputs], dim=2 |
|
).permute(0, 2, 1) |
|
if self.decode_in_inference: |
|
return self.decode_outputs(outputs, dtype=xin[0].type()) |
|
else: |
|
|
|
return outputs |
|
|
|
def get_output_and_grid(self, output, k, stride, dtype): |
|
grid = self.grids[k] |
|
|
|
batch_size = output.shape[0] |
|
n_ch = 5 + self.num_classes |
|
hsize, wsize = output.shape[-2:] |
|
if grid.shape[2:4] != output.shape[2:4]: |
|
|
|
yv, xv = torch.meshgrid([torch.arange(hsize), torch.arange(wsize)]) |
|
grid = torch.stack((xv, yv), 2).view(1, 1, hsize, wsize, 2).type(dtype) |
|
self.grids[k] = grid |
|
|
|
output = output.view(batch_size, self.n_anchors, n_ch, hsize, wsize) |
|
output = output.permute(0, 1, 3, 4, 2).reshape( |
|
batch_size, self.n_anchors * hsize * wsize, -1 |
|
) |
|
grid = grid.view(1, -1, 2) |
|
output[..., :2] = (output[..., :2] + grid) * stride |
|
output[..., 2:4] = torch.exp(output[..., 2:4]) * stride |
|
return output, grid |
|
|
|
def decode_outputs(self, outputs, dtype): |
|
grids = [] |
|
strides = [] |
|
for (hsize, wsize), stride in zip(self.hw, self.strides): |
|
|
|
yv, xv = torch.meshgrid([torch.arange(hsize), torch.arange(wsize)]) |
|
grid = torch.stack((xv, yv), 2).view(1, -1, 2) |
|
grids.append(grid) |
|
shape = grid.shape[:2] |
|
strides.append(torch.full((*shape, 1), stride)) |
|
|
|
grids = torch.cat(grids, dim=1).type(dtype) |
|
strides = torch.cat(strides, dim=1).type(dtype) |
|
|
|
outputs[..., :2] = (outputs[..., :2] + grids) * strides |
|
outputs[..., 2:4] = torch.exp(outputs[..., 2:4]) * strides |
|
return outputs |
|
|
|
def get_losses( |
|
self, |
|
imgs, |
|
x_shifts, |
|
y_shifts, |
|
expanded_strides, |
|
labels, |
|
outputs, |
|
origin_preds, |
|
dtype, |
|
): |
|
bbox_preds = outputs[:, :, :4] |
|
obj_preds = outputs[:, :, 4].unsqueeze(-1) |
|
cls_preds = outputs[:, :, 5:] |
|
|
|
|
|
nlabel = (labels.sum(dim=2) > 0).sum(dim=1) |
|
|
|
total_num_anchors = outputs.shape[1] |
|
x_shifts = torch.cat(x_shifts, 1) |
|
y_shifts = torch.cat(y_shifts, 1) |
|
expanded_strides = torch.cat(expanded_strides, 1) |
|
if self.use_l1: |
|
origin_preds = torch.cat(origin_preds, 1) |
|
|
|
cls_targets = [] |
|
reg_targets = [] |
|
l1_targets = [] |
|
obj_targets = [] |
|
fg_masks = [] |
|
|
|
num_fg = 0.0 |
|
num_gts = 0.0 |
|
|
|
for batch_idx in range(outputs.shape[0]): |
|
num_gt = int(nlabel[batch_idx]) |
|
num_gts += num_gt |
|
if num_gt == 0: |
|
cls_target = outputs.new_zeros((0, self.num_classes)) |
|
reg_target = outputs.new_zeros((0, 4)) |
|
l1_target = outputs.new_zeros((0, 4)) |
|
obj_target = outputs.new_zeros((total_num_anchors, 1)) |
|
fg_mask = outputs.new_zeros(total_num_anchors).bool() |
|
else: |
|
gt_bboxes_per_image = labels[batch_idx, :num_gt, 1:5] |
|
gt_classes = labels[batch_idx, :num_gt, 0] |
|
bboxes_preds_per_image = bbox_preds[batch_idx] |
|
|
|
try: |
|
( |
|
gt_matched_classes, |
|
fg_mask, |
|
pred_ious_this_matching, |
|
matched_gt_inds, |
|
num_fg_img, |
|
) = self.get_assignments( |
|
batch_idx, |
|
num_gt, |
|
total_num_anchors, |
|
gt_bboxes_per_image, |
|
gt_classes, |
|
bboxes_preds_per_image, |
|
expanded_strides, |
|
x_shifts, |
|
y_shifts, |
|
cls_preds, |
|
bbox_preds, |
|
obj_preds, |
|
labels, |
|
imgs, |
|
) |
|
except RuntimeError: |
|
logger.error( |
|
"OOM RuntimeError is raised due to the huge memory cost during label assignment. \ |
|
CPU mode is applied in this batch. If you want to avoid this issue, \ |
|
try to reduce the batch size or image size." |
|
) |
|
torch.cuda.empty_cache() |
|
( |
|
gt_matched_classes, |
|
fg_mask, |
|
pred_ious_this_matching, |
|
matched_gt_inds, |
|
num_fg_img, |
|
) = self.get_assignments( |
|
batch_idx, |
|
num_gt, |
|
total_num_anchors, |
|
gt_bboxes_per_image, |
|
gt_classes, |
|
bboxes_preds_per_image, |
|
expanded_strides, |
|
x_shifts, |
|
y_shifts, |
|
cls_preds, |
|
bbox_preds, |
|
obj_preds, |
|
labels, |
|
imgs, |
|
"cpu", |
|
) |
|
|
|
torch.cuda.empty_cache() |
|
num_fg += num_fg_img |
|
|
|
cls_target = F.one_hot( |
|
gt_matched_classes.to(torch.int64), self.num_classes |
|
) * pred_ious_this_matching.unsqueeze(-1) |
|
obj_target = fg_mask.unsqueeze(-1) |
|
reg_target = gt_bboxes_per_image[matched_gt_inds] |
|
if self.use_l1: |
|
l1_target = self.get_l1_target( |
|
outputs.new_zeros((num_fg_img, 4)), |
|
gt_bboxes_per_image[matched_gt_inds], |
|
expanded_strides[0][fg_mask], |
|
x_shifts=x_shifts[0][fg_mask], |
|
y_shifts=y_shifts[0][fg_mask], |
|
) |
|
|
|
cls_targets.append(cls_target) |
|
reg_targets.append(reg_target) |
|
obj_targets.append(obj_target.to(dtype)) |
|
fg_masks.append(fg_mask) |
|
if self.use_l1: |
|
l1_targets.append(l1_target) |
|
|
|
cls_targets = torch.cat(cls_targets, 0) |
|
reg_targets = torch.cat(reg_targets, 0) |
|
obj_targets = torch.cat(obj_targets, 0) |
|
fg_masks = torch.cat(fg_masks, 0) |
|
if self.use_l1: |
|
l1_targets = torch.cat(l1_targets, 0) |
|
|
|
num_fg = max(num_fg, 1) |
|
loss_iou = ( |
|
self.iou_loss(bbox_preds.view(-1, 4)[fg_masks], reg_targets) |
|
).sum() / num_fg |
|
loss_obj = ( |
|
self.bcewithlog_loss(obj_preds.view(-1, 1), obj_targets) |
|
).sum() / num_fg |
|
loss_cls = ( |
|
self.bcewithlog_loss( |
|
cls_preds.view(-1, self.num_classes)[fg_masks], cls_targets |
|
) |
|
).sum() / num_fg |
|
if self.use_l1: |
|
loss_l1 = ( |
|
self.l1_loss(origin_preds.view(-1, 4)[fg_masks], l1_targets) |
|
).sum() / num_fg |
|
else: |
|
loss_l1 = 0.0 |
|
|
|
reg_weight = 5.0 |
|
loss = reg_weight * loss_iou + loss_obj + loss_cls + loss_l1 |
|
|
|
return ( |
|
loss, |
|
reg_weight * loss_iou, |
|
loss_obj, |
|
loss_cls, |
|
loss_l1, |
|
num_fg / max(num_gts, 1), |
|
) |
|
|
|
def get_l1_target(self, l1_target, gt, stride, x_shifts, y_shifts, eps=1e-8): |
|
l1_target[:, 0] = gt[:, 0] / stride - x_shifts |
|
l1_target[:, 1] = gt[:, 1] / stride - y_shifts |
|
l1_target[:, 2] = torch.log(gt[:, 2] / stride + eps) |
|
l1_target[:, 3] = torch.log(gt[:, 3] / stride + eps) |
|
return l1_target |
|
|
|
@torch.no_grad() |
|
def get_assignments( |
|
self, |
|
batch_idx, |
|
num_gt, |
|
total_num_anchors, |
|
gt_bboxes_per_image, |
|
gt_classes, |
|
bboxes_preds_per_image, |
|
expanded_strides, |
|
x_shifts, |
|
y_shifts, |
|
cls_preds, |
|
bbox_preds, |
|
obj_preds, |
|
labels, |
|
imgs, |
|
mode="gpu", |
|
): |
|
|
|
if mode == "cpu": |
|
print("------------CPU Mode for This Batch-------------") |
|
gt_bboxes_per_image = gt_bboxes_per_image.cpu().float() |
|
bboxes_preds_per_image = bboxes_preds_per_image.cpu().float() |
|
gt_classes = gt_classes.cpu().float() |
|
expanded_strides = expanded_strides.cpu().float() |
|
x_shifts = x_shifts.cpu() |
|
y_shifts = y_shifts.cpu() |
|
|
|
fg_mask, is_in_boxes_and_center = self.get_in_boxes_info( |
|
gt_bboxes_per_image, |
|
expanded_strides, |
|
x_shifts, |
|
y_shifts, |
|
total_num_anchors, |
|
num_gt, |
|
) |
|
|
|
bboxes_preds_per_image = bboxes_preds_per_image[fg_mask] |
|
cls_preds_ = cls_preds[batch_idx][fg_mask] |
|
obj_preds_ = obj_preds[batch_idx][fg_mask] |
|
num_in_boxes_anchor = bboxes_preds_per_image.shape[0] |
|
|
|
if mode == "cpu": |
|
gt_bboxes_per_image = gt_bboxes_per_image.cpu() |
|
bboxes_preds_per_image = bboxes_preds_per_image.cpu() |
|
|
|
pair_wise_ious = bboxes_iou(gt_bboxes_per_image, bboxes_preds_per_image, False) |
|
|
|
gt_cls_per_image = ( |
|
F.one_hot(gt_classes.to(torch.int64), self.num_classes) |
|
.float() |
|
.unsqueeze(1) |
|
.repeat(1, num_in_boxes_anchor, 1) |
|
) |
|
pair_wise_ious_loss = -torch.log(pair_wise_ious + 1e-8) |
|
|
|
if mode == "cpu": |
|
cls_preds_, obj_preds_ = cls_preds_.cpu(), obj_preds_.cpu() |
|
|
|
with torch.cuda.amp.autocast(enabled=False): |
|
cls_preds_ = ( |
|
cls_preds_.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_() |
|
* obj_preds_.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_() |
|
) |
|
pair_wise_cls_loss = F.binary_cross_entropy( |
|
cls_preds_.sqrt_(), gt_cls_per_image, reduction="none" |
|
).sum(-1) |
|
del cls_preds_ |
|
|
|
cost = ( |
|
pair_wise_cls_loss |
|
+ 3.0 * pair_wise_ious_loss |
|
+ 100000.0 * (~is_in_boxes_and_center) |
|
) |
|
|
|
( |
|
num_fg, |
|
gt_matched_classes, |
|
pred_ious_this_matching, |
|
matched_gt_inds, |
|
) = self.dynamic_k_matching(cost, pair_wise_ious, gt_classes, num_gt, fg_mask) |
|
del pair_wise_cls_loss, cost, pair_wise_ious, pair_wise_ious_loss |
|
|
|
if mode == "cpu": |
|
gt_matched_classes = gt_matched_classes.cuda() |
|
fg_mask = fg_mask.cuda() |
|
pred_ious_this_matching = pred_ious_this_matching.cuda() |
|
matched_gt_inds = matched_gt_inds.cuda() |
|
|
|
return ( |
|
gt_matched_classes, |
|
fg_mask, |
|
pred_ious_this_matching, |
|
matched_gt_inds, |
|
num_fg, |
|
) |
|
|
|
def get_in_boxes_info( |
|
self, |
|
gt_bboxes_per_image, |
|
expanded_strides, |
|
x_shifts, |
|
y_shifts, |
|
total_num_anchors, |
|
num_gt, |
|
): |
|
expanded_strides_per_image = expanded_strides[0] |
|
x_shifts_per_image = x_shifts[0] * expanded_strides_per_image |
|
y_shifts_per_image = y_shifts[0] * expanded_strides_per_image |
|
x_centers_per_image = ( |
|
(x_shifts_per_image + 0.5 * expanded_strides_per_image) |
|
.unsqueeze(0) |
|
.repeat(num_gt, 1) |
|
) |
|
y_centers_per_image = ( |
|
(y_shifts_per_image + 0.5 * expanded_strides_per_image) |
|
.unsqueeze(0) |
|
.repeat(num_gt, 1) |
|
) |
|
|
|
gt_bboxes_per_image_l = ( |
|
(gt_bboxes_per_image[:, 0] - 0.5 * gt_bboxes_per_image[:, 2]) |
|
.unsqueeze(1) |
|
.repeat(1, total_num_anchors) |
|
) |
|
gt_bboxes_per_image_r = ( |
|
(gt_bboxes_per_image[:, 0] + 0.5 * gt_bboxes_per_image[:, 2]) |
|
.unsqueeze(1) |
|
.repeat(1, total_num_anchors) |
|
) |
|
gt_bboxes_per_image_t = ( |
|
(gt_bboxes_per_image[:, 1] - 0.5 * gt_bboxes_per_image[:, 3]) |
|
.unsqueeze(1) |
|
.repeat(1, total_num_anchors) |
|
) |
|
gt_bboxes_per_image_b = ( |
|
(gt_bboxes_per_image[:, 1] + 0.5 * gt_bboxes_per_image[:, 3]) |
|
.unsqueeze(1) |
|
.repeat(1, total_num_anchors) |
|
) |
|
|
|
b_l = x_centers_per_image - gt_bboxes_per_image_l |
|
b_r = gt_bboxes_per_image_r - x_centers_per_image |
|
b_t = y_centers_per_image - gt_bboxes_per_image_t |
|
b_b = gt_bboxes_per_image_b - y_centers_per_image |
|
bbox_deltas = torch.stack([b_l, b_t, b_r, b_b], 2) |
|
|
|
is_in_boxes = bbox_deltas.min(dim=-1).values > 0.0 |
|
is_in_boxes_all = is_in_boxes.sum(dim=0) > 0 |
|
|
|
|
|
center_radius = 2.5 |
|
|
|
gt_bboxes_per_image_l = (gt_bboxes_per_image[:, 0]).unsqueeze(1).repeat( |
|
1, total_num_anchors |
|
) - center_radius * expanded_strides_per_image.unsqueeze(0) |
|
gt_bboxes_per_image_r = (gt_bboxes_per_image[:, 0]).unsqueeze(1).repeat( |
|
1, total_num_anchors |
|
) + center_radius * expanded_strides_per_image.unsqueeze(0) |
|
gt_bboxes_per_image_t = (gt_bboxes_per_image[:, 1]).unsqueeze(1).repeat( |
|
1, total_num_anchors |
|
) - center_radius * expanded_strides_per_image.unsqueeze(0) |
|
gt_bboxes_per_image_b = (gt_bboxes_per_image[:, 1]).unsqueeze(1).repeat( |
|
1, total_num_anchors |
|
) + center_radius * expanded_strides_per_image.unsqueeze(0) |
|
|
|
c_l = x_centers_per_image - gt_bboxes_per_image_l |
|
c_r = gt_bboxes_per_image_r - x_centers_per_image |
|
c_t = y_centers_per_image - gt_bboxes_per_image_t |
|
c_b = gt_bboxes_per_image_b - y_centers_per_image |
|
center_deltas = torch.stack([c_l, c_t, c_r, c_b], 2) |
|
is_in_centers = center_deltas.min(dim=-1).values > 0.0 |
|
is_in_centers_all = is_in_centers.sum(dim=0) > 0 |
|
|
|
|
|
is_in_boxes_anchor = is_in_boxes_all | is_in_centers_all |
|
|
|
is_in_boxes_and_center = ( |
|
is_in_boxes[:, is_in_boxes_anchor] & is_in_centers[:, is_in_boxes_anchor] |
|
) |
|
return is_in_boxes_anchor, is_in_boxes_and_center |
|
|
|
def dynamic_k_matching(self, cost, pair_wise_ious, gt_classes, num_gt, fg_mask): |
|
|
|
|
|
matching_matrix = torch.zeros_like(cost, dtype=torch.uint8) |
|
|
|
ious_in_boxes_matrix = pair_wise_ious |
|
n_candidate_k = min(10, ious_in_boxes_matrix.size(1)) |
|
topk_ious, _ = torch.topk(ious_in_boxes_matrix, n_candidate_k, dim=1) |
|
dynamic_ks = torch.clamp(topk_ious.sum(1).int(), min=1) |
|
dynamic_ks = dynamic_ks.tolist() |
|
for gt_idx in range(num_gt): |
|
_, pos_idx = torch.topk( |
|
cost[gt_idx], k=dynamic_ks[gt_idx], largest=False |
|
) |
|
matching_matrix[gt_idx][pos_idx] = 1 |
|
|
|
del topk_ious, dynamic_ks, pos_idx |
|
|
|
anchor_matching_gt = matching_matrix.sum(0) |
|
if (anchor_matching_gt > 1).sum() > 0: |
|
_, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0) |
|
matching_matrix[:, anchor_matching_gt > 1] *= 0 |
|
matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1 |
|
fg_mask_inboxes = matching_matrix.sum(0) > 0 |
|
num_fg = fg_mask_inboxes.sum().item() |
|
|
|
fg_mask[fg_mask.clone()] = fg_mask_inboxes |
|
|
|
matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0) |
|
gt_matched_classes = gt_classes[matched_gt_inds] |
|
|
|
pred_ious_this_matching = (matching_matrix * pair_wise_ious).sum(0)[ |
|
fg_mask_inboxes |
|
] |
|
return num_fg, gt_matched_classes, pred_ious_this_matching, matched_gt_inds |
|
|