File size: 24,681 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) Megvii Inc. All rights reserved.

import math
from loguru import logger

import torch
import torch.nn as nn
import torch.nn.functional as F

# from core.common.dnn.detection.yolox.yolox.utils import bboxes_iou

from .losses import IOUloss
from .network_blocks import BaseConv, DWConv


def bboxes_iou(bboxes_a, bboxes_b, xyxy=True):
    if bboxes_a.shape[1] != 4 or bboxes_b.shape[1] != 4:
        raise IndexError

    if xyxy:
        tl = torch.max(bboxes_a[:, None, :2], bboxes_b[:, :2])
        br = torch.min(bboxes_a[:, None, 2:], bboxes_b[:, 2:])
        area_a = torch.prod(bboxes_a[:, 2:] - bboxes_a[:, :2], 1)
        area_b = torch.prod(bboxes_b[:, 2:] - bboxes_b[:, :2], 1)
    else:
        tl = torch.max(
            (bboxes_a[:, None, :2] - bboxes_a[:, None, 2:] / 2),
            (bboxes_b[:, :2] - bboxes_b[:, 2:] / 2),
        )
        br = torch.min(
            (bboxes_a[:, None, :2] + bboxes_a[:, None, 2:] / 2),
            (bboxes_b[:, :2] + bboxes_b[:, 2:] / 2),
        )

        area_a = torch.prod(bboxes_a[:, 2:], 1)
        area_b = torch.prod(bboxes_b[:, 2:], 1)
    en = (tl < br).type(tl.type()).prod(dim=2)
    area_i = torch.prod(br - tl, 2) * en  # * ((tl < br).all())
    return area_i / (area_a[:, None] + area_b - area_i)


class YOLOXHead(nn.Module):
    def __init__(
        self,
        num_classes,
        width=1.0,
        strides=[8, 16, 32],
        in_channels=[256, 512, 1024],
        act="silu",
        depthwise=False,
    ):
        """
        Args:
            act (str): activation type of conv. Defalut value: "silu".
            depthwise (bool): whether apply depthwise conv in conv branch. Defalut value: False.
        """
        super().__init__()

        self.n_anchors = 1
        self.num_classes = num_classes
        self.decode_in_inference = True  # for deploy, set to False

        self.cls_convs = nn.ModuleList()
        self.reg_convs = nn.ModuleList()
        self.cls_preds = nn.ModuleList()
        self.reg_preds = nn.ModuleList()
        self.obj_preds = nn.ModuleList()
        self.stems = nn.ModuleList()
        Conv = DWConv if depthwise else BaseConv

        for i in range(len(in_channels)):
            self.stems.append(
                BaseConv(
                    in_channels=int(in_channels[i] * width),
                    out_channels=int(256 * width),
                    ksize=1,
                    stride=1,
                    act=act,
                )
            )
            self.cls_convs.append(
                nn.Sequential(
                    *[
                        Conv(
                            in_channels=int(256 * width),
                            out_channels=int(256 * width),
                            ksize=3,
                            stride=1,
                            act=act,
                        ),
                        Conv(
                            in_channels=int(256 * width),
                            out_channels=int(256 * width),
                            ksize=3,
                            stride=1,
                            act=act,
                        ),
                    ]
                )
            )
            self.reg_convs.append(
                nn.Sequential(
                    *[
                        Conv(
                            in_channels=int(256 * width),
                            out_channels=int(256 * width),
                            ksize=3,
                            stride=1,
                            act=act,
                        ),
                        Conv(
                            in_channels=int(256 * width),
                            out_channels=int(256 * width),
                            ksize=3,
                            stride=1,
                            act=act,
                        ),
                    ]
                )
            )
            self.cls_preds.append(
                nn.Conv2d(
                    in_channels=int(256 * width),
                    out_channels=self.n_anchors * self.num_classes,
                    kernel_size=1,
                    stride=1,
                    padding=0,
                )
            )
            self.reg_preds.append(
                nn.Conv2d(
                    in_channels=int(256 * width),
                    out_channels=4,
                    kernel_size=1,
                    stride=1,
                    padding=0,
                )
            )
            self.obj_preds.append(
                nn.Conv2d(
                    in_channels=int(256 * width),
                    out_channels=self.n_anchors * 1,
                    kernel_size=1,
                    stride=1,
                    padding=0,
                )
            )

        self.use_l1 = False
        self.l1_loss = nn.L1Loss(reduction="none")
        self.bcewithlog_loss = nn.BCEWithLogitsLoss(reduction="none")
        self.iou_loss = IOUloss(reduction="none")
        self.strides = strides
        self.grids = [torch.zeros(1)] * len(in_channels)

    def initialize_biases(self, prior_prob):
        for conv in self.cls_preds:
            b = conv.bias.view(self.n_anchors, -1)
            b.data.fill_(-math.log((1 - prior_prob) / prior_prob))
            conv.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)

        for conv in self.obj_preds:
            b = conv.bias.view(self.n_anchors, -1)
            b.data.fill_(-math.log((1 - prior_prob) / prior_prob))
            conv.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)

    def forward(self, xin, labels=None, imgs=None):
        if isinstance(xin, list):
            xin, labels, imgs = xin[0], xin[1], xin[2]
            
        outputs = []
        origin_preds = []
        x_shifts = []
        y_shifts = []
        expanded_strides = []

        for k, (cls_conv, reg_conv, stride_this_level, x) in enumerate(
            zip(self.cls_convs, self.reg_convs, self.strides, xin)
        ):
            x = self.stems[k](x)
            cls_x = x
            reg_x = x

            cls_feat = cls_conv(cls_x)
            cls_output = self.cls_preds[k](cls_feat)
            # print('cls output size', cls_output.size())

            reg_feat = reg_conv(reg_x)
            reg_output = self.reg_preds[k](reg_feat)
            obj_output = self.obj_preds[k](reg_feat)

            # if self.training:
            if labels is not None:
                output = torch.cat([reg_output, obj_output, cls_output], 1)
                output, grid = self.get_output_and_grid(
                    output, k, stride_this_level, xin[0].type()
                )
                x_shifts.append(grid[:, :, 0])
                y_shifts.append(grid[:, :, 1])
                expanded_strides.append(
                    torch.zeros(1, grid.shape[1])
                    .fill_(stride_this_level)
                    .type_as(xin[0])
                )
                if self.use_l1:
                    batch_size = reg_output.shape[0]
                    hsize, wsize = reg_output.shape[-2:]
                    reg_output = reg_output.view(
                        batch_size, self.n_anchors, 4, hsize, wsize
                    )
                    reg_output = reg_output.permute(0, 1, 3, 4, 2).reshape(
                        batch_size, -1, 4
                    )
                    origin_preds.append(reg_output.clone())

            else:
                output = torch.cat(
                    [reg_output, obj_output.sigmoid(), cls_output.sigmoid()], 1
                )

            outputs.append(output)
        # print(111)
        # if self.training:
        if labels is not None:
            return self.get_losses(
                imgs,
                x_shifts,
                y_shifts,
                expanded_strides,
                labels,
                torch.cat(outputs, 1),
                origin_preds,
                dtype=xin[0].dtype,
            )
        else:
            self.hw = [x.shape[-2:] for x in outputs]
            # [batch, n_anchors_all, 85]
            outputs = torch.cat(
                [x.flatten(start_dim=2) for x in outputs], dim=2
            ).permute(0, 2, 1)
            if self.decode_in_inference:
                return self.decode_outputs(outputs, dtype=xin[0].type())
            else:
                # print(outputs.size())
                return outputs

    def get_output_and_grid(self, output, k, stride, dtype):
        grid = self.grids[k]

        batch_size = output.shape[0]
        n_ch = 5 + self.num_classes
        hsize, wsize = output.shape[-2:]
        if grid.shape[2:4] != output.shape[2:4]:
            # yv, xv = torch.meshgrid([torch.arange(hsize), torch.arange(wsize)], indexing="ij")
            yv, xv = torch.meshgrid([torch.arange(hsize), torch.arange(wsize)]) # fixed bu queyu, 2022/03/14
            grid = torch.stack((xv, yv), 2).view(1, 1, hsize, wsize, 2).type(dtype)
            self.grids[k] = grid

        output = output.view(batch_size, self.n_anchors, n_ch, hsize, wsize)
        output = output.permute(0, 1, 3, 4, 2).reshape(
            batch_size, self.n_anchors * hsize * wsize, -1
        )
        grid = grid.view(1, -1, 2)
        output[..., :2] = (output[..., :2] + grid) * stride
        output[..., 2:4] = torch.exp(output[..., 2:4]) * stride
        return output, grid

    def decode_outputs(self, outputs, dtype):
        grids = []
        strides = []
        for (hsize, wsize), stride in zip(self.hw, self.strides):
            # yv, xv = torch.meshgrid([torch.arange(hsize), torch.arange(wsize)], indexing="ij")
            yv, xv = torch.meshgrid([torch.arange(hsize), torch.arange(wsize)]) # fixed by queyu, 2022/03/14
            grid = torch.stack((xv, yv), 2).view(1, -1, 2)
            grids.append(grid)
            shape = grid.shape[:2]
            strides.append(torch.full((*shape, 1), stride))

        grids = torch.cat(grids, dim=1).type(dtype)
        strides = torch.cat(strides, dim=1).type(dtype)

        outputs[..., :2] = (outputs[..., :2] + grids) * strides
        outputs[..., 2:4] = torch.exp(outputs[..., 2:4]) * strides
        return outputs

    def get_losses(
        self,
        imgs,
        x_shifts,
        y_shifts,
        expanded_strides,
        labels,
        outputs,
        origin_preds,
        dtype,
    ):
        bbox_preds = outputs[:, :, :4]  # [batch, n_anchors_all, 4]
        obj_preds = outputs[:, :, 4].unsqueeze(-1)  # [batch, n_anchors_all, 1]
        cls_preds = outputs[:, :, 5:]  # [batch, n_anchors_all, n_cls]

        # calculate targets
        nlabel = (labels.sum(dim=2) > 0).sum(dim=1)  # number of objects

        total_num_anchors = outputs.shape[1]
        x_shifts = torch.cat(x_shifts, 1)  # [1, n_anchors_all]
        y_shifts = torch.cat(y_shifts, 1)  # [1, n_anchors_all]
        expanded_strides = torch.cat(expanded_strides, 1)
        if self.use_l1:
            origin_preds = torch.cat(origin_preds, 1)

        cls_targets = []
        reg_targets = []
        l1_targets = []
        obj_targets = []
        fg_masks = []

        num_fg = 0.0
        num_gts = 0.0

        for batch_idx in range(outputs.shape[0]):
            num_gt = int(nlabel[batch_idx])
            num_gts += num_gt
            if num_gt == 0:
                cls_target = outputs.new_zeros((0, self.num_classes))
                reg_target = outputs.new_zeros((0, 4))
                l1_target = outputs.new_zeros((0, 4))
                obj_target = outputs.new_zeros((total_num_anchors, 1))
                fg_mask = outputs.new_zeros(total_num_anchors).bool()
            else:
                gt_bboxes_per_image = labels[batch_idx, :num_gt, 1:5]
                gt_classes = labels[batch_idx, :num_gt, 0]
                bboxes_preds_per_image = bbox_preds[batch_idx]

                try:
                    (
                        gt_matched_classes,
                        fg_mask,
                        pred_ious_this_matching,
                        matched_gt_inds,
                        num_fg_img,
                    ) = self.get_assignments(  # noqa
                        batch_idx,
                        num_gt,
                        total_num_anchors,
                        gt_bboxes_per_image,
                        gt_classes,
                        bboxes_preds_per_image,
                        expanded_strides,
                        x_shifts,
                        y_shifts,
                        cls_preds,
                        bbox_preds,
                        obj_preds,
                        labels,
                        imgs,
                    )
                except RuntimeError:
                    logger.error(
                        "OOM RuntimeError is raised due to the huge memory cost during label assignment. \
                           CPU mode is applied in this batch. If you want to avoid this issue, \
                           try to reduce the batch size or image size."
                    )
                    torch.cuda.empty_cache()
                    (
                        gt_matched_classes,
                        fg_mask,
                        pred_ious_this_matching,
                        matched_gt_inds,
                        num_fg_img,
                    ) = self.get_assignments(  # noqa
                        batch_idx,
                        num_gt,
                        total_num_anchors,
                        gt_bboxes_per_image,
                        gt_classes,
                        bboxes_preds_per_image,
                        expanded_strides,
                        x_shifts,
                        y_shifts,
                        cls_preds,
                        bbox_preds,
                        obj_preds,
                        labels,
                        imgs,
                        "cpu",
                    )

                torch.cuda.empty_cache()
                num_fg += num_fg_img

                cls_target = F.one_hot(
                    gt_matched_classes.to(torch.int64), self.num_classes
                ) * pred_ious_this_matching.unsqueeze(-1)
                obj_target = fg_mask.unsqueeze(-1)
                reg_target = gt_bboxes_per_image[matched_gt_inds]
                if self.use_l1:
                    l1_target = self.get_l1_target(
                        outputs.new_zeros((num_fg_img, 4)),
                        gt_bboxes_per_image[matched_gt_inds],
                        expanded_strides[0][fg_mask],
                        x_shifts=x_shifts[0][fg_mask],
                        y_shifts=y_shifts[0][fg_mask],
                    )

            cls_targets.append(cls_target)
            reg_targets.append(reg_target)
            obj_targets.append(obj_target.to(dtype))
            fg_masks.append(fg_mask)
            if self.use_l1:
                l1_targets.append(l1_target)

        cls_targets = torch.cat(cls_targets, 0)
        reg_targets = torch.cat(reg_targets, 0)
        obj_targets = torch.cat(obj_targets, 0)
        fg_masks = torch.cat(fg_masks, 0)
        if self.use_l1:
            l1_targets = torch.cat(l1_targets, 0)

        num_fg = max(num_fg, 1)
        loss_iou = (
            self.iou_loss(bbox_preds.view(-1, 4)[fg_masks], reg_targets)
        ).sum() / num_fg
        loss_obj = (
            self.bcewithlog_loss(obj_preds.view(-1, 1), obj_targets)
        ).sum() / num_fg
        loss_cls = (
            self.bcewithlog_loss(
                cls_preds.view(-1, self.num_classes)[fg_masks], cls_targets
            )
        ).sum() / num_fg
        if self.use_l1:
            loss_l1 = (
                self.l1_loss(origin_preds.view(-1, 4)[fg_masks], l1_targets)
            ).sum() / num_fg
        else:
            loss_l1 = 0.0

        reg_weight = 5.0
        loss = reg_weight * loss_iou + loss_obj + loss_cls + loss_l1

        return (
            loss,
            reg_weight * loss_iou,
            loss_obj,
            loss_cls,
            loss_l1,
            num_fg / max(num_gts, 1),
        )

    def get_l1_target(self, l1_target, gt, stride, x_shifts, y_shifts, eps=1e-8):
        l1_target[:, 0] = gt[:, 0] / stride - x_shifts
        l1_target[:, 1] = gt[:, 1] / stride - y_shifts
        l1_target[:, 2] = torch.log(gt[:, 2] / stride + eps)
        l1_target[:, 3] = torch.log(gt[:, 3] / stride + eps)
        return l1_target

    @torch.no_grad()
    def get_assignments(
        self,
        batch_idx,
        num_gt,
        total_num_anchors,
        gt_bboxes_per_image,
        gt_classes,
        bboxes_preds_per_image,
        expanded_strides,
        x_shifts,
        y_shifts,
        cls_preds,
        bbox_preds,
        obj_preds,
        labels,
        imgs,
        mode="gpu",
    ):

        if mode == "cpu":
            print("------------CPU Mode for This Batch-------------")
            gt_bboxes_per_image = gt_bboxes_per_image.cpu().float()
            bboxes_preds_per_image = bboxes_preds_per_image.cpu().float()
            gt_classes = gt_classes.cpu().float()
            expanded_strides = expanded_strides.cpu().float()
            x_shifts = x_shifts.cpu()
            y_shifts = y_shifts.cpu()

        fg_mask, is_in_boxes_and_center = self.get_in_boxes_info(
            gt_bboxes_per_image,
            expanded_strides,
            x_shifts,
            y_shifts,
            total_num_anchors,
            num_gt,
        )

        bboxes_preds_per_image = bboxes_preds_per_image[fg_mask]
        cls_preds_ = cls_preds[batch_idx][fg_mask]
        obj_preds_ = obj_preds[batch_idx][fg_mask]
        num_in_boxes_anchor = bboxes_preds_per_image.shape[0]

        if mode == "cpu":
            gt_bboxes_per_image = gt_bboxes_per_image.cpu()
            bboxes_preds_per_image = bboxes_preds_per_image.cpu()

        pair_wise_ious = bboxes_iou(gt_bboxes_per_image, bboxes_preds_per_image, False)

        gt_cls_per_image = (
            F.one_hot(gt_classes.to(torch.int64), self.num_classes)
            .float()
            .unsqueeze(1)
            .repeat(1, num_in_boxes_anchor, 1)
        )
        pair_wise_ious_loss = -torch.log(pair_wise_ious + 1e-8)

        if mode == "cpu":
            cls_preds_, obj_preds_ = cls_preds_.cpu(), obj_preds_.cpu()

        with torch.cuda.amp.autocast(enabled=False):
            cls_preds_ = (
                cls_preds_.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
                * obj_preds_.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
            )
            pair_wise_cls_loss = F.binary_cross_entropy(
                cls_preds_.sqrt_(), gt_cls_per_image, reduction="none"
            ).sum(-1)
        del cls_preds_

        cost = (
            pair_wise_cls_loss
            + 3.0 * pair_wise_ious_loss
            + 100000.0 * (~is_in_boxes_and_center)
        )

        (
            num_fg,
            gt_matched_classes,
            pred_ious_this_matching,
            matched_gt_inds,
        ) = self.dynamic_k_matching(cost, pair_wise_ious, gt_classes, num_gt, fg_mask)
        del pair_wise_cls_loss, cost, pair_wise_ious, pair_wise_ious_loss

        if mode == "cpu":
            gt_matched_classes = gt_matched_classes.cuda()
            fg_mask = fg_mask.cuda()
            pred_ious_this_matching = pred_ious_this_matching.cuda()
            matched_gt_inds = matched_gt_inds.cuda()

        return (
            gt_matched_classes,
            fg_mask,
            pred_ious_this_matching,
            matched_gt_inds,
            num_fg,
        )

    def get_in_boxes_info(
        self,
        gt_bboxes_per_image,
        expanded_strides,
        x_shifts,
        y_shifts,
        total_num_anchors,
        num_gt,
    ):
        expanded_strides_per_image = expanded_strides[0]
        x_shifts_per_image = x_shifts[0] * expanded_strides_per_image
        y_shifts_per_image = y_shifts[0] * expanded_strides_per_image
        x_centers_per_image = (
            (x_shifts_per_image + 0.5 * expanded_strides_per_image)
            .unsqueeze(0)
            .repeat(num_gt, 1)
        )  # [n_anchor] -> [n_gt, n_anchor]
        y_centers_per_image = (
            (y_shifts_per_image + 0.5 * expanded_strides_per_image)
            .unsqueeze(0)
            .repeat(num_gt, 1)
        )

        gt_bboxes_per_image_l = (
            (gt_bboxes_per_image[:, 0] - 0.5 * gt_bboxes_per_image[:, 2])
            .unsqueeze(1)
            .repeat(1, total_num_anchors)
        )
        gt_bboxes_per_image_r = (
            (gt_bboxes_per_image[:, 0] + 0.5 * gt_bboxes_per_image[:, 2])
            .unsqueeze(1)
            .repeat(1, total_num_anchors)
        )
        gt_bboxes_per_image_t = (
            (gt_bboxes_per_image[:, 1] - 0.5 * gt_bboxes_per_image[:, 3])
            .unsqueeze(1)
            .repeat(1, total_num_anchors)
        )
        gt_bboxes_per_image_b = (
            (gt_bboxes_per_image[:, 1] + 0.5 * gt_bboxes_per_image[:, 3])
            .unsqueeze(1)
            .repeat(1, total_num_anchors)
        )

        b_l = x_centers_per_image - gt_bboxes_per_image_l
        b_r = gt_bboxes_per_image_r - x_centers_per_image
        b_t = y_centers_per_image - gt_bboxes_per_image_t
        b_b = gt_bboxes_per_image_b - y_centers_per_image
        bbox_deltas = torch.stack([b_l, b_t, b_r, b_b], 2)

        is_in_boxes = bbox_deltas.min(dim=-1).values > 0.0
        is_in_boxes_all = is_in_boxes.sum(dim=0) > 0
        # in fixed center

        center_radius = 2.5

        gt_bboxes_per_image_l = (gt_bboxes_per_image[:, 0]).unsqueeze(1).repeat(
            1, total_num_anchors
        ) - center_radius * expanded_strides_per_image.unsqueeze(0)
        gt_bboxes_per_image_r = (gt_bboxes_per_image[:, 0]).unsqueeze(1).repeat(
            1, total_num_anchors
        ) + center_radius * expanded_strides_per_image.unsqueeze(0)
        gt_bboxes_per_image_t = (gt_bboxes_per_image[:, 1]).unsqueeze(1).repeat(
            1, total_num_anchors
        ) - center_radius * expanded_strides_per_image.unsqueeze(0)
        gt_bboxes_per_image_b = (gt_bboxes_per_image[:, 1]).unsqueeze(1).repeat(
            1, total_num_anchors
        ) + center_radius * expanded_strides_per_image.unsqueeze(0)

        c_l = x_centers_per_image - gt_bboxes_per_image_l
        c_r = gt_bboxes_per_image_r - x_centers_per_image
        c_t = y_centers_per_image - gt_bboxes_per_image_t
        c_b = gt_bboxes_per_image_b - y_centers_per_image
        center_deltas = torch.stack([c_l, c_t, c_r, c_b], 2)
        is_in_centers = center_deltas.min(dim=-1).values > 0.0
        is_in_centers_all = is_in_centers.sum(dim=0) > 0

        # in boxes and in centers
        is_in_boxes_anchor = is_in_boxes_all | is_in_centers_all

        is_in_boxes_and_center = (
            is_in_boxes[:, is_in_boxes_anchor] & is_in_centers[:, is_in_boxes_anchor]
        )
        return is_in_boxes_anchor, is_in_boxes_and_center

    def dynamic_k_matching(self, cost, pair_wise_ious, gt_classes, num_gt, fg_mask):
        # Dynamic K
        # ---------------------------------------------------------------
        matching_matrix = torch.zeros_like(cost, dtype=torch.uint8)

        ious_in_boxes_matrix = pair_wise_ious
        n_candidate_k = min(10, ious_in_boxes_matrix.size(1))
        topk_ious, _ = torch.topk(ious_in_boxes_matrix, n_candidate_k, dim=1)
        dynamic_ks = torch.clamp(topk_ious.sum(1).int(), min=1)
        dynamic_ks = dynamic_ks.tolist()
        for gt_idx in range(num_gt):
            _, pos_idx = torch.topk(
                cost[gt_idx], k=dynamic_ks[gt_idx], largest=False
            )
            matching_matrix[gt_idx][pos_idx] = 1

        del topk_ious, dynamic_ks, pos_idx

        anchor_matching_gt = matching_matrix.sum(0)
        if (anchor_matching_gt > 1).sum() > 0:
            _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
            matching_matrix[:, anchor_matching_gt > 1] *= 0
            matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1
        fg_mask_inboxes = matching_matrix.sum(0) > 0
        num_fg = fg_mask_inboxes.sum().item()

        fg_mask[fg_mask.clone()] = fg_mask_inboxes

        matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
        gt_matched_classes = gt_classes[matched_gt_inds]

        pred_ious_this_matching = (matching_matrix * pair_wise_ious).sum(0)[
            fg_mask_inboxes
        ]
        return num_fg, gt_matched_classes, pred_ious_this_matching, matched_gt_inds