|
from typing import List |
|
from data.dataloader import build_dataloader |
|
|
|
from new_impl.cv.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel |
|
|
|
import torch |
|
import sys |
|
from torch import nn |
|
from new_impl.cv.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel |
|
from new_impl.cv.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg |
|
from new_impl.cv.elasticdnn.model.base import ElasticDNNUtil |
|
from new_impl.cv.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util |
|
from new_impl.cv.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util |
|
from new_impl.cv.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util |
|
from new_impl.cv.elasticdnn.pipeline.offline.fm_lora.vit import FMLoRA_ViT_Util |
|
from new_impl.cv.elasticdnn.model.vit import ElasticViTUtil |
|
from utils.common.file import ensure_dir |
|
from utils.dl.common.model import LayerActivation, get_module, get_parameter |
|
from utils.common.exp import save_models_dict_for_init, get_res_save_dir |
|
from data import build_scenario |
|
from utils.dl.common.loss import CrossEntropyLossSoft |
|
import torch.nn.functional as F |
|
from utils.dl.common.env import create_tbwriter |
|
import os |
|
from utils.common.log import logger |
|
from utils.common.data_record import write_json |
|
|
|
from new_impl.cv.feat_align.main import OnlineFeatAlignModel, FeatAlignAlg |
|
import tqdm |
|
from new_impl.cv.feat_align.mmd import mmd_rbf |
|
|
|
class ElasticDNN_ClsOnlineModel(ElasticDNN_OnlineModel): |
|
def get_accuracy(self, test_loader, *args, **kwargs): |
|
acc = 0 |
|
sample_num = 0 |
|
|
|
self.to_eval_mode() |
|
|
|
with torch.no_grad(): |
|
pbar = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), dynamic_ncols=True, leave=False) |
|
for batch_index, (x, y) in pbar: |
|
x, y = x.to(self.device), y.to(self.device) |
|
output = self.infer(x) |
|
pred = F.softmax(output, dim=1).argmax(dim=1) |
|
correct = torch.eq(pred, y).sum().item() |
|
acc += correct |
|
sample_num += len(y) |
|
|
|
pbar.set_description(f'cur_batch_total: {len(y)}, cur_batch_correct: {correct}, ' |
|
f'cur_batch_acc: {(correct / len(y)):.4f}') |
|
|
|
acc /= sample_num |
|
return acc |
|
|
|
def get_elastic_dnn_util(self) -> ElasticDNNUtil: |
|
return ElasticViTUtil() |
|
|
|
def get_fm_matched_param_of_md_param(self, md_param_name): |
|
|
|
self_param_name = md_param_name |
|
fm = self.models_dict['fm'] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if any([k in self_param_name for k in ['fbs', 'cls_token', 'pos_embed']]): |
|
return None |
|
|
|
p = get_parameter(self.models_dict['md'], self_param_name) |
|
if p.dim() == 0: |
|
return None |
|
elif p.dim() == 1 and 'layernorm' in self_param_name and 'weight' in self_param_name: |
|
return get_parameter(fm, self_param_name) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if ('attention.attention.projection_query' in self_param_name or 'attention.attention.projection_key' in self_param_name or \ |
|
'attention.attention.projection_value' in self_param_name) and ('weight' in self_param_name): |
|
ss = self_param_name.split('.') |
|
|
|
fm_qkv_name = '.'.join(ss[0: -1]) + '.qkv' |
|
fm_qkv = get_module(fm, fm_qkv_name) |
|
|
|
fm_abs_name = '.'.join(ss[0: -1]) + '.abs' |
|
fm_abs = get_module(fm, fm_abs_name) |
|
|
|
if not hasattr(fm_abs, '_mul_lora_weight'): |
|
logger.debug(f'set _mul_lora_weight in {fm_abs_name}') |
|
setattr(fm_abs, '_mul_lora_weight', |
|
nn.Parameter(torch.cat([(_abs[0].weight.T @ _abs[1].weight.T).T for _abs in fm_abs], dim=0))) |
|
|
|
return torch.cat([ |
|
fm_qkv.weight.data, |
|
fm_abs._mul_lora_weight.data |
|
], dim=0) |
|
|
|
elif ('attention.attention.projection_query' in self_param_name or 'attention.attention.projection_key' in self_param_name or \ |
|
'attention.attention.projection_value' in self_param_name) and ('bias' in self_param_name): |
|
ss = self_param_name.split('.') |
|
|
|
fm_qkv_name = '.'.join(ss[0: -1]) + '.qkv.bias' |
|
return get_parameter(fm, fm_qkv_name) |
|
|
|
elif 'intermediate.dense' in self_param_name and 'weight' in self_param_name: |
|
fm_param_name = self_param_name.replace('.linear', '') |
|
return get_parameter(fm, fm_param_name) |
|
elif 'output.dense' in self_param_name and 'weight' in self_param_name: |
|
fm_param_name = self_param_name.replace('.linear', '') |
|
return get_parameter(fm, fm_param_name) |
|
else: |
|
|
|
return None |
|
|
|
|
|
def update_fm_param(self, md_param_name, cal_new_fm_param_by_md_param): |
|
if not ('attention.attention.projection_query.weight' in md_param_name or 'attention.attention.projection_key.weight' in md_param_name or 'attention.attention.projection_value.weight' in md_param_name): |
|
matched_fm_param_ref = self.get_fm_matched_param_of_md_param(md_param_name) |
|
matched_fm_param_ref.copy_(cal_new_fm_param_by_md_param) |
|
else: |
|
new_fm_attn_weight, new_fm_lora_weight = torch.chunk(cal_new_fm_param_by_md_param, 2, 0) |
|
ss = md_param_name.split('.') |
|
fm = self.models_dict['fm'] |
|
|
|
fm_qkv_name = '.'.join(ss[0: -1]) + '.qkv' |
|
fm_qkv = get_module(fm, fm_qkv_name) |
|
fm_qkv.weight.data.copy_(new_fm_attn_weight) |
|
|
|
|
|
fm_abs_name = '.'.join(ss[0: -1]) + '.abs' |
|
fm_abs = get_module(fm, fm_abs_name) |
|
fm_abs._mul_lora_weight.data.copy_(new_fm_lora_weight) |
|
|
|
def get_md_matched_param_of_fm_param(self, fm_param_name): |
|
return super().get_md_matched_param_of_fm_param(fm_param_name) |
|
|
|
def get_md_matched_param_of_sd_param(self, sd_param_name): |
|
|
|
self_param_name = sd_param_name |
|
md = self.models_dict['md'] |
|
if any([k in self_param_name for k in ['fbs', 'cls_token', 'pos_embed']]): |
|
return None |
|
|
|
p = get_parameter(self.models_dict['sd'], self_param_name) |
|
if p.dim() == 0: |
|
return None |
|
elif p.dim() == 1 and 'norm' in self_param_name and 'weight' in self_param_name: |
|
return get_parameter(md, self_param_name) |
|
|
|
|
|
if 'qkv.weight' in self_param_name: |
|
return get_parameter(md, self_param_name) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elif 'mlp.fc1.0.weight' in self_param_name: |
|
fm_param_name = '.'.join(self_param_name.split('.')[0: -2]) + '.linear.weight' |
|
return get_parameter(md, fm_param_name) |
|
|
|
elif 'mlp.fc2' in self_param_name and 'weight' in self_param_name: |
|
fm_param_name = self_param_name |
|
return get_parameter(md, fm_param_name) |
|
|
|
else: |
|
|
|
return None |
|
|
|
def get_task_head_params(self): |
|
head = get_module(self.models_dict['sd'], 'head') |
|
return list(head.parameters()) |
|
|
|
|
|
|
|
class ClsOnlineFeatAlignModel(OnlineFeatAlignModel): |
|
def get_trained_params(self): |
|
|
|
qkv_and_norm_params = [p for n, p in self.models_dict['main'].named_parameters()] |
|
return qkv_and_norm_params |
|
|
|
def get_feature_hook(self): |
|
return LayerActivation(get_module(self.models_dict['main'], 'classifier'), False, self.device) |
|
|
|
def forward_to_get_task_loss(self, x, y): |
|
return F.cross_entropy(self.infer(x), y) |
|
|
|
def get_mmd_loss(self, f1, f2): |
|
return mmd_rbf(f1, f2) |
|
|
|
def infer(self, x, *args, **kwargs): |
|
return self.models_dict['main'](x).logits |
|
|
|
def get_accuracy(self, test_loader, *args, **kwargs): |
|
acc = 0 |
|
sample_num = 0 |
|
|
|
self.to_eval_mode() |
|
|
|
with torch.no_grad(): |
|
pbar = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), dynamic_ncols=True, leave=False) |
|
for batch_index, (x, y) in pbar: |
|
x, y = x.to(self.device), y.to(self.device) |
|
output = self.infer(x) |
|
pred = F.softmax(output, dim=1).argmax(dim=1) |
|
correct = torch.eq(pred, y).sum().item() |
|
acc += correct |
|
sample_num += len(y) |
|
|
|
pbar.set_description(f'cur_batch_total: {len(y)}, cur_batch_correct: {correct}, ' |
|
f'cur_batch_acc: {(correct / len(y)):.4f}') |
|
|
|
acc /= sample_num |
|
return acc |