File size: 12,056 Bytes
b84549f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
from typing import List
from data.dataloader import build_dataloader
# from methods.elasticdnn.api.online_model import ElasticDNN_OnlineModel
from new_impl.cv.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel
import torch
import sys
from torch import nn
from new_impl.cv.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel
from new_impl.cv.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg
from new_impl.cv.elasticdnn.model.base import ElasticDNNUtil
from new_impl.cv.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util
from new_impl.cv.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util
from new_impl.cv.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util
from new_impl.cv.elasticdnn.pipeline.offline.fm_lora.vit import FMLoRA_ViT_Util
from new_impl.cv.elasticdnn.model.vit import ElasticViTUtil
from utils.common.file import ensure_dir
from utils.dl.common.model import LayerActivation, get_module, get_parameter
from utils.common.exp import save_models_dict_for_init, get_res_save_dir
from data import build_scenario
from utils.dl.common.loss import CrossEntropyLossSoft
import torch.nn.functional as F
from utils.dl.common.env import create_tbwriter
import os
from utils.common.log import logger
from utils.common.data_record import write_json
# from methods.shot.shot import OnlineShotModel
from new_impl.cv.feat_align.main import OnlineFeatAlignModel, FeatAlignAlg
import tqdm
from new_impl.cv.feat_align.mmd import mmd_rbf
class ElasticDNN_ClsOnlineModel(ElasticDNN_OnlineModel):
def get_accuracy(self, test_loader, *args, **kwargs):
acc = 0
sample_num = 0
self.to_eval_mode()
with torch.no_grad():
pbar = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), dynamic_ncols=True, leave=False)
for batch_index, (x, y) in pbar:
x, y = x.to(self.device), y.to(self.device)
output = self.infer(x)
pred = F.softmax(output, dim=1).argmax(dim=1)
correct = torch.eq(pred, y).sum().item()
acc += correct
sample_num += len(y)
pbar.set_description(f'cur_batch_total: {len(y)}, cur_batch_correct: {correct}, '
f'cur_batch_acc: {(correct / len(y)):.4f}')
acc /= sample_num
return acc
def get_elastic_dnn_util(self) -> ElasticDNNUtil:
return ElasticViTUtil()
def get_fm_matched_param_of_md_param(self, md_param_name):
# only between qkv.weight, norm.weight/bias
self_param_name = md_param_name
fm = self.models_dict['fm']
# if any([k in self_param_name for k in ['fbs', 'cls_token', 'pos_embed']]):
# return None
# p = get_parameter(self.models_dict['md'], self_param_name)
# if p.dim() == 0:
# return None
# elif p.dim() == 1 and 'norm' in self_param_name and 'weight' in self_param_name:
# return get_parameter(fm, self_param_name)
if any([k in self_param_name for k in ['fbs', 'cls_token', 'pos_embed']]):
return None
p = get_parameter(self.models_dict['md'], self_param_name)
if p.dim() == 0:
return None
elif p.dim() == 1 and 'layernorm' in self_param_name and 'weight' in self_param_name:
return get_parameter(fm, self_param_name)
# 1. xx.qkv.to_qkv.yy to xx.qkv.qkv.aa and xx.qkv.abs.zz
# if 'qkv.weight' in self_param_name:
# ss = self_param_name.split('.')
# fm_qkv_name = '.'.join(ss[0: -1]) + '.qkv'
# fm_qkv = get_module(fm, fm_qkv_name)
# fm_abs_name = '.'.join(ss[0: -1]) + '.abs'
# fm_abs = get_module(fm, fm_abs_name)
# # NOTE: unrecoverable operation! multiply LoRA parameters to allow it being updated in update_fm_param()
# # TODO: if fm will be used for inference, _mul_lora_weight will not be applied!
# if not hasattr(fm_abs, '_mul_lora_weight'):
# logger.debug(f'set _mul_lora_weight in {fm_abs_name}')
# setattr(fm_abs, '_mul_lora_weight',
# nn.Parameter(torch.cat([(_abs[0].weight.T @ _abs[1].weight.T).T for _abs in fm_abs], dim=0)))
# return torch.cat([
# fm_qkv.weight.data, # task-agnositc params
# fm_abs._mul_lora_weight.data # task-specific params (LoRA)
# ], dim=0)
# # elif 'to_qkv.bias' in self_param_name:
# # ss = self_param_name.split('.')
# # fm_qkv_name = '.'.join(ss[0: -2]) + '.qkv.bias'
# # return get_parameter(fm, fm_qkv_name)
# elif 'mlp.fc1' in self_param_name and 'weight' in self_param_name:
# fm_param_name = self_param_name.replace('.linear', '')
# return get_parameter(fm, fm_param_name)
# elif 'mlp.fc2' in self_param_name and 'weight' in self_param_name:
# fm_param_name = self_param_name
# return get_parameter(fm, fm_param_name)
# else:
# # return get_parameter(fm, self_param_name)
# return None
if ('attention.attention.projection_query' in self_param_name or 'attention.attention.projection_key' in self_param_name or \
'attention.attention.projection_value' in self_param_name) and ('weight' in self_param_name):
ss = self_param_name.split('.')
fm_qkv_name = '.'.join(ss[0: -1]) + '.qkv'
fm_qkv = get_module(fm, fm_qkv_name)
fm_abs_name = '.'.join(ss[0: -1]) + '.abs'
fm_abs = get_module(fm, fm_abs_name)
if not hasattr(fm_abs, '_mul_lora_weight'):
logger.debug(f'set _mul_lora_weight in {fm_abs_name}')
setattr(fm_abs, '_mul_lora_weight',
nn.Parameter(torch.cat([(_abs[0].weight.T @ _abs[1].weight.T).T for _abs in fm_abs], dim=0)))
return torch.cat([
fm_qkv.weight.data, # task-agnositc params
fm_abs._mul_lora_weight.data # task-specific params (LoRA)
], dim=0)
elif ('attention.attention.projection_query' in self_param_name or 'attention.attention.projection_key' in self_param_name or \
'attention.attention.projection_value' in self_param_name) and ('bias' in self_param_name):
ss = self_param_name.split('.')
fm_qkv_name = '.'.join(ss[0: -1]) + '.qkv.bias'
return get_parameter(fm, fm_qkv_name)
elif 'intermediate.dense' in self_param_name and 'weight' in self_param_name:
fm_param_name = self_param_name.replace('.linear', '')
return get_parameter(fm, fm_param_name)
elif 'output.dense' in self_param_name and 'weight' in self_param_name:
fm_param_name = self_param_name.replace('.linear', '')
return get_parameter(fm, fm_param_name)
else:
#return get_parameter(fm, self_param_name)
return None
def update_fm_param(self, md_param_name, cal_new_fm_param_by_md_param):
if not ('attention.attention.projection_query.weight' in md_param_name or 'attention.attention.projection_key.weight' in md_param_name or 'attention.attention.projection_value.weight' in md_param_name):
matched_fm_param_ref = self.get_fm_matched_param_of_md_param(md_param_name)
matched_fm_param_ref.copy_(cal_new_fm_param_by_md_param)
else:
new_fm_attn_weight, new_fm_lora_weight = torch.chunk(cal_new_fm_param_by_md_param, 2, 0)
ss = md_param_name.split('.')
fm = self.models_dict['fm']
# update task-agnostic parameters
fm_qkv_name = '.'.join(ss[0: -1]) + '.qkv'
fm_qkv = get_module(fm, fm_qkv_name)
fm_qkv.weight.data.copy_(new_fm_attn_weight)
# update task-specific parameters
fm_abs_name = '.'.join(ss[0: -1]) + '.abs'
fm_abs = get_module(fm, fm_abs_name)
fm_abs._mul_lora_weight.data.copy_(new_fm_lora_weight) # TODO: this will not be applied in inference!
def get_md_matched_param_of_fm_param(self, fm_param_name):
return super().get_md_matched_param_of_fm_param(fm_param_name)
def get_md_matched_param_of_sd_param(self, sd_param_name):
# only between qkv.weight, norm.weight/bias
self_param_name = sd_param_name
md = self.models_dict['md']
if any([k in self_param_name for k in ['fbs', 'cls_token', 'pos_embed']]):
return None
p = get_parameter(self.models_dict['sd'], self_param_name)
if p.dim() == 0:
return None
elif p.dim() == 1 and 'norm' in self_param_name and 'weight' in self_param_name:
return get_parameter(md, self_param_name)
# 1. xx.qkv.to_qkv.yy to xx.qkv.qkv.aa and xx.qkv.abs.zz
if 'qkv.weight' in self_param_name:
return get_parameter(md, self_param_name)
# elif 'to_qkv.bias' in self_param_name:
# ss = self_param_name.split('.')
# fm_qkv_name = '.'.join(ss[0: -2]) + '.qkv.bias'
# return get_parameter(fm, fm_qkv_name)
elif 'mlp.fc1.0.weight' in self_param_name:
fm_param_name = '.'.join(self_param_name.split('.')[0: -2]) + '.linear.weight'
return get_parameter(md, fm_param_name)
elif 'mlp.fc2' in self_param_name and 'weight' in self_param_name:
fm_param_name = self_param_name
return get_parameter(md, fm_param_name)
else:
# return get_parameter(fm, self_param_name)
return None
def get_task_head_params(self):
head = get_module(self.models_dict['sd'], 'head')
return list(head.parameters())
class ClsOnlineFeatAlignModel(OnlineFeatAlignModel):
def get_trained_params(self): # TODO: elastic fm only train a part of params
#qkv_and_norm_params = [p for n, p in self.models_dict['main'].named_parameters() if 'attention.attention.projection_query' in n or 'attention.attention.projection_key' in n or 'attention.attention.projection_value' in n or 'intermediate.dense' in n or 'output.dense' in n]
qkv_and_norm_params = [p for n, p in self.models_dict['main'].named_parameters()]
return qkv_and_norm_params
def get_feature_hook(self):
return LayerActivation(get_module(self.models_dict['main'], 'classifier'), False, self.device)
def forward_to_get_task_loss(self, x, y):
return F.cross_entropy(self.infer(x), y)
def get_mmd_loss(self, f1, f2):
return mmd_rbf(f1, f2)
def infer(self, x, *args, **kwargs):
return self.models_dict['main'](x).logits
def get_accuracy(self, test_loader, *args, **kwargs):
acc = 0
sample_num = 0
self.to_eval_mode()
with torch.no_grad():
pbar = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), dynamic_ncols=True, leave=False)
for batch_index, (x, y) in pbar:
x, y = x.to(self.device), y.to(self.device)
output = self.infer(x)
pred = F.softmax(output, dim=1).argmax(dim=1)
correct = torch.eq(pred, y).sum().item()
acc += correct
sample_num += len(y)
pbar.set_description(f'cur_batch_total: {len(y)}, cur_batch_correct: {correct}, '
f'cur_batch_acc: {(correct / len(y)):.4f}')
acc /= sample_num
return acc |