|
'''ResNet in PyTorch. |
|
For Pre-activation ResNet, see 'preact_resnet.py'. |
|
Reference: |
|
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun |
|
Deep Residual Learning for Image Recognition. arXiv:1512.03385 |
|
''' |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from utils.utils import load_weights |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, in_planes, planes, stride=1): |
|
super().__init__() |
|
self.conv1 = nn.Conv2d( |
|
in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, |
|
stride=1, padding=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
|
|
self.shortcut = nn.Sequential() |
|
if stride != 1 or in_planes != self.expansion*planes: |
|
self.shortcut = nn.Sequential( |
|
nn.Conv2d(in_planes, self.expansion*planes, |
|
kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(self.expansion*planes) |
|
) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
out = self.bn2(self.conv2(out)) |
|
out += self.shortcut(x) |
|
out = F.relu(out) |
|
return out |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
expansion = 2 |
|
|
|
def __init__(self, in_planes, planes, stride=1): |
|
super().__init__() |
|
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, |
|
stride=stride, padding=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.conv3 = nn.Conv2d(planes, self.expansion * |
|
planes, kernel_size=1, bias=False) |
|
self.bn3 = nn.BatchNorm2d(self.expansion*planes) |
|
|
|
self.shortcut = nn.Sequential() |
|
if stride != 1 or in_planes != self.expansion*planes: |
|
self.shortcut = nn.Sequential( |
|
nn.Conv2d(in_planes, self.expansion*planes, |
|
kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(self.expansion*planes) |
|
) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
out = F.relu(self.bn2(self.conv2(out))) |
|
out = self.bn3(self.conv3(out)) |
|
out += self.shortcut(x) |
|
out = F.relu(out) |
|
return out |
|
|
|
|
|
class ResNet(nn.Module): |
|
def __init__(self, block, num_blocks, channels=4, num_classes=10, gap_output=False, before_gap_output=False, visualize=False): |
|
super().__init__() |
|
self.block = block |
|
self.num_blocks = num_blocks |
|
self.in_planes = 64 |
|
self.gap_output = gap_output |
|
self.before_gap_out = before_gap_output |
|
self.visualize = visualize |
|
|
|
self.conv1 = nn.Conv2d(channels, 64, kernel_size=3, |
|
stride=1, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(64) |
|
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) |
|
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) |
|
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) |
|
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) |
|
self.layer5 = None |
|
self.layer6 = None |
|
if not gap_output and not before_gap_output: |
|
self.linear = nn.Linear(512*block.expansion, num_classes) |
|
|
|
def add_top_blocks(self, num_classes=1): |
|
self.layer5 = self._make_layer(Bottleneck, 512, 2, stride=2) |
|
self.layer6 = self._make_layer(Bottleneck, 512, 2, stride=2) |
|
|
|
if not self.gap_output and not self.before_gap_out: |
|
self.linear = nn.Linear(1024, num_classes) |
|
|
|
def _make_layer(self, block, planes, num_blocks, stride): |
|
strides = [stride] + [1]*(num_blocks-1) |
|
layers = [] |
|
for stride in strides: |
|
layers.append(block(self.in_planes, planes, stride)) |
|
self.in_planes = planes * block.expansion |
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
out = self.layer1(out) |
|
out = self.layer2(out) |
|
out = self.layer3(out) |
|
out4 = self.layer4(out) |
|
|
|
if self.before_gap_out: |
|
return out4 |
|
|
|
if self.layer5: |
|
out5 = self.layer5(out4) |
|
out6 = self.layer6(out5) |
|
|
|
n, c, _, _ = out6.size() |
|
out = out6.view(n, c, -1).mean(-1) |
|
|
|
if self.gap_output: |
|
return out |
|
|
|
out = self.linear(out) |
|
if self.visualize: |
|
return out, out4, out6 |
|
return out |
|
|
|
|
|
class Encoder(nn.Module): |
|
def __init__(self, channels): |
|
super().__init__() |
|
self.in_planes = 64 |
|
|
|
self.conv1 = nn.Conv2d(channels, 64, kernel_size=3, |
|
stride=1, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(64) |
|
self.layer1 = self._make_layer(BasicBlock, 64, 2, stride=1) |
|
self.layer2 = self._make_layer(BasicBlock, 128, 2, stride=2) |
|
|
|
def _make_layer(self, block, planes, num_blocks, stride): |
|
strides = [stride] + [1]*(num_blocks-1) |
|
layers = [] |
|
for stride in strides: |
|
layers.append(block(self.in_planes, planes, stride)) |
|
self.in_planes = planes * block.expansion |
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
out = self.layer1(out) |
|
out = self.layer2(out) |
|
return out |
|
|
|
|
|
class SharedBottleneck(nn.Module): |
|
def __init__(self, in_planes): |
|
super().__init__() |
|
self.in_planes = in_planes |
|
|
|
self.layer3 = self._make_layer(BasicBlock, 256, 2, stride=2) |
|
self.layer4 = self._make_layer(BasicBlock, 512, 2, stride=2) |
|
self.layer5 = self._make_layer(Bottleneck, 512, 2, stride=2) |
|
self.layer6 = self._make_layer(Bottleneck, 512, 2, stride=2) |
|
|
|
def _make_layer(self, block, planes, num_blocks, stride): |
|
strides = [stride] + [1]*(num_blocks-1) |
|
layers = [] |
|
for stride in strides: |
|
layers.append(block(self.in_planes, planes, stride)) |
|
self.in_planes = planes * block.expansion |
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
out = self.layer3(x) |
|
out = self.layer4(out) |
|
out = self.layer5(out) |
|
out = self.layer6(out) |
|
n, c, _, _ = out.size() |
|
out = out.view(n, c, -1).mean(-1) |
|
return out |
|
|
|
|
|
class Classifier(nn.Module): |
|
def __init__(self, num_classes, in_planes=512, visualize=False): |
|
super().__init__() |
|
self.in_planes = in_planes |
|
self.visualize = visualize |
|
|
|
self.layer5 = self._make_layer(Bottleneck, 512, 2, stride=2) |
|
self.layer6 = self._make_layer(Bottleneck, 512, 2, stride=2) |
|
self.linear = nn.Linear(1024, num_classes) |
|
|
|
def _make_layer(self, block, planes, num_blocks, stride): |
|
strides = [stride] + [1]*(num_blocks-1) |
|
layers = [] |
|
for stride in strides: |
|
layers.append(block(self.in_planes, planes, stride)) |
|
self.in_planes = planes * block.expansion |
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
out = self.layer5(x) |
|
feature_maps = self.layer6(out) |
|
|
|
n, c, _, _ = feature_maps.size() |
|
out = feature_maps.view(n, c, -1).mean(-1) |
|
out = self.linear(out) |
|
|
|
if self.visualize: |
|
return out, feature_maps |
|
|
|
return out |
|
|
|
|
|
class SBOnet(nn.Module): |
|
"""SBOnet. |
|
|
|
Parameters: |
|
- shared: True to share the Bottleneck between the two sides, False for the 'concat' version. |
|
- weights: path to pretrained weights of patch classifier for Encoder branches |
|
""" |
|
|
|
def __init__(self, shared=True, num_classes=1, weights=None): |
|
super().__init__() |
|
|
|
self.shared = shared |
|
|
|
self.encoder_sx = Encoder(channels=2) |
|
self.encoder_dx = Encoder(channels=2) |
|
|
|
self.shared_resnet = SharedBottleneck(in_planes=128 if shared else 256) |
|
|
|
if weights: |
|
load_weights(self.encoder_sx, weights) |
|
load_weights(self.encoder_dx, weights) |
|
|
|
self.classifier_sx = nn.Linear(1024, num_classes) |
|
self.classifier_dx = nn.Linear(1024, num_classes) |
|
|
|
def forward(self, x): |
|
x_sx, x_dx = x |
|
|
|
|
|
out_sx = self.encoder_sx(x_sx) |
|
out_dx = self.encoder_dx(x_dx) |
|
|
|
|
|
if self.shared: |
|
out_sx = self.shared_resnet(out_sx) |
|
out_dx = self.shared_resnet(out_dx) |
|
|
|
out_sx = self.classifier_sx(out_sx) |
|
out_dx = self.classifier_dx(out_dx) |
|
|
|
else: |
|
out = torch.cat([out_sx, out_dx], dim=1) |
|
out = self.shared_resnet(out) |
|
out_sx = self.classifier_sx(out) |
|
out_dx = self.classifier_dx(out) |
|
|
|
out = torch.cat([out_sx, out_dx], dim=0) |
|
return out |
|
|
|
|
|
class SEnet(nn.Module): |
|
"""SEnet. |
|
|
|
Parameters: |
|
- weights: path to pretrained weights of patch classifier for PHCResNet18 encoder or path to whole-image classifier |
|
- patch_weights: True if the weights correspond to patch classifier, False if they are whole-image. |
|
In the latter case also Classifier branches will be initialized. |
|
""" |
|
|
|
def __init__(self, num_classes=1, weights=None, patch_weights=True, visualize=False): |
|
super().__init__() |
|
self.visualize = visualize |
|
self.resnet18 = ResNet18( |
|
num_classes=num_classes, channels=2, before_gap_output=True) |
|
|
|
if weights: |
|
print('Loading weights for resnet18 from ', weights) |
|
load_weights(self.resnet18, weights) |
|
|
|
self.classifier_sx = Classifier(num_classes, visualize=visualize) |
|
self.classifier_dx = Classifier(num_classes, visualize=visualize) |
|
|
|
if not patch_weights and weights: |
|
print('Loading weights for classifiers from ', weights) |
|
load_weights(self.classifier_sx, weights) |
|
load_weights(self.classifier_dx, weights) |
|
|
|
def forward(self, x): |
|
x_sx, x_dx = x |
|
|
|
|
|
out_enc_sx = self.resnet18(x_sx) |
|
out_enc_dx = self.resnet18(x_dx) |
|
|
|
if self.visualize: |
|
out_sx, act_sx = self.classifier_sx(out_enc_sx) |
|
out_dx, act_dx = self.classifier_dx(out_enc_dx) |
|
else: |
|
|
|
out_sx = self.classifier_sx(out_enc_sx) |
|
out_dx = self.classifier_dx(out_enc_dx) |
|
|
|
out = torch.cat([out_sx, out_dx], dim=0) |
|
|
|
if self.visualize: |
|
return out, out_enc_sx, out_enc_dx, act_sx, act_dx |
|
|
|
return out |
|
|
|
|
|
def ResNet18(num_classes=10, channels=4, gap_output=False, before_gap_output=False, visualize=False): |
|
return ResNet(BasicBlock, |
|
[2, 2, 2, 2], |
|
num_classes=num_classes, |
|
channels=channels, |
|
gap_output=gap_output, |
|
before_gap_output=before_gap_output, |
|
visualize=visualize) |
|
|
|
|
|
def ResNet50(num_classes=10, channels=4): |
|
return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, channels=channels) |
|
|