File size: 11,364 Bytes
861e32a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
'''ResNet in PyTorch.
For Pre-activation ResNet, see 'preact_resnet.py'.
Reference:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
    Deep Residual Learning for Image Recognition. arXiv:1512.03385
'''
import torch
import torch.nn as nn
import torch.nn.functional as F

from utils.utils import load_weights


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, in_planes, planes, stride=1):
        super().__init__()
        self.conv1 = nn.Conv2d(
            in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
                               stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion*planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion*planes,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion*planes)
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        out += self.shortcut(x)
        out = F.relu(out)
        return out


class Bottleneck(nn.Module):
    expansion = 2

    def __init__(self, in_planes, planes, stride=1):
        super().__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
                               stride=stride, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, self.expansion *
                               planes, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(self.expansion*planes)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion*planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion*planes,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion*planes)
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = F.relu(self.bn2(self.conv2(out)))
        out = self.bn3(self.conv3(out))
        out += self.shortcut(x)
        out = F.relu(out)
        return out


class ResNet(nn.Module):
    def __init__(self, block, num_blocks, channels=4, num_classes=10, gap_output=False, before_gap_output=False, visualize=False):
        super().__init__()
        self.block = block
        self.num_blocks = num_blocks
        self.in_planes = 64
        self.gap_output = gap_output
        self.before_gap_out = before_gap_output
        self.visualize = visualize

        self.conv1 = nn.Conv2d(channels, 64, kernel_size=3,
                               stride=1, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
        self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
        self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
        self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
        self.layer5 = None
        self.layer6 = None
        if not gap_output and not before_gap_output:
            self.linear = nn.Linear(512*block.expansion, num_classes)

    def add_top_blocks(self, num_classes=1):
        self.layer5 = self._make_layer(Bottleneck, 512, 2, stride=2)
        self.layer6 = self._make_layer(Bottleneck, 512, 2, stride=2)

        if not self.gap_output and not self.before_gap_out:
            self.linear = nn.Linear(1024, num_classes)

    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1]*(num_blocks-1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes * block.expansion
        return nn.Sequential(*layers)

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out4 = self.layer4(out)

        if self.before_gap_out:
            return out4

        if self.layer5:
            out5 = self.layer5(out4)
            out6 = self.layer6(out5)

        n, c, _, _ = out6.size()
        out = out6.view(n, c, -1).mean(-1)

        if self.gap_output:
            return out

        out = self.linear(out)
        if self.visualize:
            return out, out4, out6
        return out


class Encoder(nn.Module):
    def __init__(self, channels):
        super().__init__()
        self.in_planes = 64

        self.conv1 = nn.Conv2d(channels, 64, kernel_size=3,
                               stride=1, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.layer1 = self._make_layer(BasicBlock, 64, 2, stride=1)
        self.layer2 = self._make_layer(BasicBlock, 128, 2, stride=2)

    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1]*(num_blocks-1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes * block.expansion
        return nn.Sequential(*layers)

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.layer1(out)
        out = self.layer2(out)
        return out


class SharedBottleneck(nn.Module):
    def __init__(self, in_planes):
        super().__init__()
        self.in_planes = in_planes

        self.layer3 = self._make_layer(BasicBlock, 256, 2, stride=2)
        self.layer4 = self._make_layer(BasicBlock, 512, 2, stride=2)
        self.layer5 = self._make_layer(Bottleneck, 512, 2, stride=2)
        self.layer6 = self._make_layer(Bottleneck, 512, 2, stride=2)

    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1]*(num_blocks-1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes * block.expansion
        return nn.Sequential(*layers)

    def forward(self, x):
        out = self.layer3(x)
        out = self.layer4(out)
        out = self.layer5(out)
        out = self.layer6(out)
        n, c, _, _ = out.size()
        out = out.view(n, c, -1).mean(-1)
        return out


class Classifier(nn.Module):
    def __init__(self, num_classes, in_planes=512, visualize=False):
        super().__init__()
        self.in_planes = in_planes
        self.visualize = visualize

        self.layer5 = self._make_layer(Bottleneck, 512, 2, stride=2)
        self.layer6 = self._make_layer(Bottleneck, 512, 2, stride=2)
        self.linear = nn.Linear(1024, num_classes)

    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1]*(num_blocks-1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes * block.expansion
        return nn.Sequential(*layers)

    def forward(self, x):
        out = self.layer5(x)
        feature_maps = self.layer6(out)

        n, c, _, _ = feature_maps.size()
        out = feature_maps.view(n, c, -1).mean(-1)
        out = self.linear(out)

        if self.visualize:
            return out, feature_maps

        return out


class SBOnet(nn.Module):
    """SBOnet.

    Parameters:
    - shared: True to share the Bottleneck between the two sides, False for the 'concat' version.
    - weights: path to pretrained weights of patch classifier for Encoder branches
    """

    def __init__(self, shared=True, num_classes=1, weights=None):
        super().__init__()

        self.shared = shared

        self.encoder_sx = Encoder(channels=2)
        self.encoder_dx = Encoder(channels=2)

        self.shared_resnet = SharedBottleneck(in_planes=128 if shared else 256)

        if weights:
            load_weights(self.encoder_sx, weights)
            load_weights(self.encoder_dx, weights)

        self.classifier_sx = nn.Linear(1024, num_classes)
        self.classifier_dx = nn.Linear(1024, num_classes)

    def forward(self, x):
        x_sx, x_dx = x

        # Apply Encoder
        out_sx = self.encoder_sx(x_sx)
        out_dx = self.encoder_dx(x_dx)

        # Shared layers
        if self.shared:
            out_sx = self.shared_resnet(out_sx)
            out_dx = self.shared_resnet(out_dx)

            out_sx = self.classifier_sx(out_sx)
            out_dx = self.classifier_dx(out_dx)

        else:  # Concat version
            out = torch.cat([out_sx, out_dx], dim=1)
            out = self.shared_resnet(out)
            out_sx = self.classifier_sx(out)
            out_dx = self.classifier_dx(out)

        out = torch.cat([out_sx, out_dx], dim=0)
        return out


class SEnet(nn.Module):
    """SEnet.

    Parameters:
    - weights: path to pretrained weights of patch classifier for PHCResNet18 encoder or path to whole-image classifier
    - patch_weights: True if the weights correspond to patch classifier, False if they are whole-image.
                     In the latter case also Classifier branches will be initialized.
    """

    def __init__(self, num_classes=1, weights=None, patch_weights=True, visualize=False):
        super().__init__()
        self.visualize = visualize
        self.resnet18 = ResNet18(
            num_classes=num_classes, channels=2, before_gap_output=True)

        if weights:
            print('Loading weights for resnet18 from ', weights)
            load_weights(self.resnet18, weights)

        self.classifier_sx = Classifier(num_classes, visualize=visualize)
        self.classifier_dx = Classifier(num_classes, visualize=visualize)

        if not patch_weights and weights:
            print('Loading weights for classifiers from ', weights)
            load_weights(self.classifier_sx, weights)
            load_weights(self.classifier_dx, weights)

    def forward(self, x):
        x_sx, x_dx = x

        # Apply Encoder
        out_enc_sx = self.resnet18(x_sx)
        out_enc_dx = self.resnet18(x_dx)

        if self.visualize:
            out_sx, act_sx = self.classifier_sx(out_enc_sx)
            out_dx, act_dx = self.classifier_dx(out_enc_dx)
        else:
            # Apply refiner blocks + classifier
            out_sx = self.classifier_sx(out_enc_sx)
            out_dx = self.classifier_dx(out_enc_dx)

        out = torch.cat([out_sx, out_dx], dim=0)

        if self.visualize:
            return out, out_enc_sx, out_enc_dx, act_sx, act_dx

        return out


def ResNet18(num_classes=10, channels=4, gap_output=False, before_gap_output=False, visualize=False):
    return ResNet(BasicBlock,
                  [2, 2, 2, 2],
                  num_classes=num_classes,
                  channels=channels,
                  gap_output=gap_output,
                  before_gap_output=before_gap_output,
                  visualize=visualize)


def ResNet50(num_classes=10, channels=4):
    return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, channels=channels)