haritsahm
commited on
Commit
·
861e32a
1
Parent(s):
0fd3229
Add model files
Browse files- models/__init__.py +0 -0
- models/hypercomplex_layers.py +523 -0
- models/hypercomplex_ops.py +905 -0
- models/phc_models.py +365 -0
- models/real_models.py +333 -0
- utils/__init__.py +0 -0
- utils/utils.py +17 -0
models/__init__.py
ADDED
File without changes
|
models/hypercomplex_layers.py
ADDED
@@ -0,0 +1,523 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This layers are borrowed from: https://github.com/eleGAN23/HyperNets
|
2 |
+
# by Eleonora Grassucci,
|
3 |
+
# Please check the original reposiotry for further explanations.
|
4 |
+
|
5 |
+
import math
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from numpy.random import RandomState
|
12 |
+
from torch.nn import Module, init
|
13 |
+
from torch.nn.parameter import Parameter
|
14 |
+
|
15 |
+
from models import hypercomplex_ops as hp_ops
|
16 |
+
|
17 |
+
########################
|
18 |
+
## STANDARD PHM LAYER ##
|
19 |
+
########################
|
20 |
+
|
21 |
+
|
22 |
+
class PHMLinear(nn.Module):
|
23 |
+
def __init__(self, n, in_features, out_features, cuda=True):
|
24 |
+
super().__init__()
|
25 |
+
self.n = n
|
26 |
+
self.in_features = in_features
|
27 |
+
self.out_features = out_features
|
28 |
+
self.cuda = cuda
|
29 |
+
|
30 |
+
self.bias = nn.Parameter(torch.Tensor(out_features))
|
31 |
+
|
32 |
+
self.A = nn.Parameter(
|
33 |
+
torch.nn.init.xavier_uniform_(torch.zeros((n, n, n))))
|
34 |
+
|
35 |
+
self.S = nn.Parameter(torch.nn.init.xavier_uniform_(
|
36 |
+
torch.zeros((n, self.out_features//n, self.in_features//n))))
|
37 |
+
|
38 |
+
self.weight = torch.zeros((self.out_features, self.in_features))
|
39 |
+
|
40 |
+
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
|
41 |
+
bound = 1 / math.sqrt(fan_in)
|
42 |
+
init.uniform_(self.bias, -bound, bound)
|
43 |
+
|
44 |
+
# adapted from Bayer Research's implementation
|
45 |
+
def kronecker_product1(self, a, b):
|
46 |
+
siz1 = torch.Size(torch.tensor(
|
47 |
+
a.shape[-2:]) * torch.tensor(b.shape[-2:]))
|
48 |
+
res = a.unsqueeze(-1).unsqueeze(-3) * b.unsqueeze(-2).unsqueeze(-4)
|
49 |
+
siz0 = res.shape[:-4]
|
50 |
+
out = res.reshape(siz0 + siz1)
|
51 |
+
return out
|
52 |
+
|
53 |
+
def kronecker_product2(self):
|
54 |
+
H = torch.zeros((self.out_features, self.in_features))
|
55 |
+
for i in range(self.n):
|
56 |
+
H = H + torch.kron(self.A[i], self.S[i])
|
57 |
+
return H
|
58 |
+
|
59 |
+
def forward(self, input):
|
60 |
+
self.weight = torch.sum(self.kronecker_product1(self.A, self.S), dim=0)
|
61 |
+
# self.weight = self.kronecker_product2() <- SLOWER
|
62 |
+
input = input.type(dtype=self.weight.type())
|
63 |
+
return F.linear(input, weight=self.weight, bias=self.bias)
|
64 |
+
|
65 |
+
def extra_repr(self) -> str:
|
66 |
+
return 'in_features={}, out_features={}, bias={}'.format(
|
67 |
+
self.in_features, self.out_features, self.bias is not None)
|
68 |
+
|
69 |
+
def reset_parameters(self) -> None:
|
70 |
+
init.kaiming_uniform_(self.A, a=math.sqrt(5))
|
71 |
+
init.kaiming_uniform_(self.S, a=math.sqrt(5))
|
72 |
+
fan_in, _ = init._calculate_fan_in_and_fan_out(self.placeholder)
|
73 |
+
bound = 1 / math.sqrt(fan_in)
|
74 |
+
init.uniform_(self.bias, -bound, bound)
|
75 |
+
|
76 |
+
#############################
|
77 |
+
## CONVOLUTIONAL PH LAYER ##
|
78 |
+
#############################
|
79 |
+
|
80 |
+
|
81 |
+
class PHConv(Module):
|
82 |
+
def __init__(self, n, in_features, out_features, kernel_size, padding=0, stride=1, cuda=True):
|
83 |
+
super().__init__()
|
84 |
+
self.n = n
|
85 |
+
self.in_features = in_features
|
86 |
+
self.out_features = out_features
|
87 |
+
self.padding = padding
|
88 |
+
self.stride = stride
|
89 |
+
self.cuda = cuda
|
90 |
+
|
91 |
+
self.bias = nn.Parameter(torch.Tensor(out_features))
|
92 |
+
self.A = nn.Parameter(
|
93 |
+
torch.nn.init.xavier_uniform_(torch.zeros((n, n, n))))
|
94 |
+
self.F = nn.Parameter(torch.nn.init.xavier_uniform_(
|
95 |
+
torch.zeros((n, self.out_features//n, self.in_features//n, kernel_size, kernel_size))))
|
96 |
+
self.weight = torch.zeros((self.out_features, self.in_features))
|
97 |
+
self.kernel_size = kernel_size
|
98 |
+
|
99 |
+
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
|
100 |
+
bound = 1 / math.sqrt(fan_in)
|
101 |
+
init.uniform_(self.bias, -bound, bound)
|
102 |
+
|
103 |
+
def kronecker_product1(self, A, F):
|
104 |
+
siz1 = torch.Size(torch.tensor(
|
105 |
+
A.shape[-2:]) * torch.tensor(F.shape[-4:-2]))
|
106 |
+
siz2 = torch.Size(torch.tensor(F.shape[-2:]))
|
107 |
+
res = A.unsqueeze(-1).unsqueeze(-3).unsqueeze(-1).unsqueeze(-1) * \
|
108 |
+
F.unsqueeze(-4).unsqueeze(-6)
|
109 |
+
siz0 = res.shape[:1]
|
110 |
+
out = res.reshape(siz0 + siz1 + siz2)
|
111 |
+
return out
|
112 |
+
|
113 |
+
def kronecker_product2(self):
|
114 |
+
H = torch.zeros((self.out_features, self.in_features,
|
115 |
+
self.kernel_size, self.kernel_size))
|
116 |
+
if self.cuda:
|
117 |
+
H = H.cuda()
|
118 |
+
for i in range(self.n):
|
119 |
+
kron_prod = torch.kron(self.A[i], self.F[i]).view(
|
120 |
+
self.out_features, self.in_features, self.kernel_size, self.kernel_size)
|
121 |
+
H = H + kron_prod
|
122 |
+
return H
|
123 |
+
|
124 |
+
def forward(self, input):
|
125 |
+
self.weight = torch.sum(self.kronecker_product1(self.A, self.F), dim=0)
|
126 |
+
# self.weight = self.kronecker_product2()
|
127 |
+
# if self.cuda:
|
128 |
+
# self.weight = self.weight.cuda()
|
129 |
+
|
130 |
+
input = input.type(dtype=self.weight.type())
|
131 |
+
|
132 |
+
return F.conv2d(input, weight=self.weight, stride=self.stride, padding=self.padding)
|
133 |
+
|
134 |
+
def extra_repr(self) -> str:
|
135 |
+
return 'in_features={}, out_features={}, bias={}'.format(
|
136 |
+
self.in_features, self.out_features, self.bias is not None)
|
137 |
+
|
138 |
+
def reset_parameters(self) -> None:
|
139 |
+
init.kaiming_uniform_(self.A, a=math.sqrt(5))
|
140 |
+
init.kaiming_uniform_(self.F, a=math.sqrt(5))
|
141 |
+
fan_in, _ = init._calculate_fan_in_and_fan_out(self.placeholder)
|
142 |
+
bound = 1 / math.sqrt(fan_in)
|
143 |
+
init.uniform_(self.bias, -bound, bound)
|
144 |
+
|
145 |
+
|
146 |
+
class KroneckerConv(Module):
|
147 |
+
r"""Applies a Quaternion Convolution to the incoming data."""
|
148 |
+
|
149 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride,
|
150 |
+
dilatation=1, padding=0, groups=1, bias=True, init_criterion='glorot',
|
151 |
+
weight_init='quaternion', seed=None, operation='convolution2d', rotation=False,
|
152 |
+
quaternion_format=True, scale=False, learn_A=False, cuda=True, first_layer=False):
|
153 |
+
|
154 |
+
super().__init__()
|
155 |
+
|
156 |
+
self.in_channels = in_channels // 4
|
157 |
+
self.out_channels = out_channels // 4
|
158 |
+
self.stride = stride
|
159 |
+
self.padding = padding
|
160 |
+
self.groups = groups
|
161 |
+
self.dilatation = dilatation
|
162 |
+
self.init_criterion = init_criterion
|
163 |
+
self.weight_init = weight_init
|
164 |
+
self.seed = seed if seed is not None else np.random.randint(0, 1234)
|
165 |
+
self.rng = RandomState(self.seed)
|
166 |
+
self.operation = operation
|
167 |
+
self.rotation = rotation
|
168 |
+
self.quaternion_format = quaternion_format
|
169 |
+
self.winit = {'quaternion': hp_ops.quaternion_init,
|
170 |
+
'unitary': hp_ops.unitary_init,
|
171 |
+
'random': hp_ops.random_init}[self.weight_init]
|
172 |
+
self.scale = scale
|
173 |
+
self.learn_A = learn_A
|
174 |
+
self.cuda = cuda
|
175 |
+
self.first_layer = first_layer
|
176 |
+
|
177 |
+
(self.kernel_size, self.w_shape) = hp_ops.get_kernel_and_weight_shape(self.operation,
|
178 |
+
self.in_channels, self.out_channels, kernel_size)
|
179 |
+
|
180 |
+
self.r_weight = Parameter(torch.Tensor(*self.w_shape))
|
181 |
+
self.i_weight = Parameter(torch.Tensor(*self.w_shape))
|
182 |
+
self.j_weight = Parameter(torch.Tensor(*self.w_shape))
|
183 |
+
self.k_weight = Parameter(torch.Tensor(*self.w_shape))
|
184 |
+
|
185 |
+
if self.scale:
|
186 |
+
self.scale_param = Parameter(torch.Tensor(self.r_weight.shape))
|
187 |
+
else:
|
188 |
+
self.scale_param = None
|
189 |
+
|
190 |
+
if self.rotation:
|
191 |
+
self.zero_kernel = Parameter(torch.zeros(
|
192 |
+
self.r_weight.shape), requires_grad=False)
|
193 |
+
if bias:
|
194 |
+
self.bias = Parameter(torch.Tensor(out_channels))
|
195 |
+
else:
|
196 |
+
self.register_parameter('bias', None)
|
197 |
+
self.reset_parameters()
|
198 |
+
|
199 |
+
def reset_parameters(self):
|
200 |
+
hp_ops.affect_init_conv(self.r_weight, self.i_weight, self.j_weight, self.k_weight,
|
201 |
+
self.kernel_size, self.winit, self.rng, self.init_criterion)
|
202 |
+
if self.scale_param is not None:
|
203 |
+
torch.nn.init.xavier_uniform_(self.scale_param.data)
|
204 |
+
if self.bias is not None:
|
205 |
+
self.bias.data.zero_()
|
206 |
+
|
207 |
+
def forward(self, input):
|
208 |
+
if self.rotation:
|
209 |
+
# return quaternion_conv_rotation(input, self.zero_kernel, self.r_weight, self.i_weight, self.j_weight,
|
210 |
+
# self.k_weight, self.bias, self.stride, self.padding, self.groups, self.dilatation,
|
211 |
+
# self.quaternion_format, self.scale_param)
|
212 |
+
pass
|
213 |
+
else:
|
214 |
+
return hp_ops.kronecker_conv(input, self.r_weight, self.i_weight, self.j_weight,
|
215 |
+
self.k_weight, self.bias, self.stride, self.padding, self.groups, self.dilatation, self.learn_A, self.cuda, self.first_layer)
|
216 |
+
|
217 |
+
def __repr__(self):
|
218 |
+
return self.__class__.__name__ + '(' \
|
219 |
+
+ 'in_channels=' + str(self.in_channels) \
|
220 |
+
+ ', out_channels=' + str(self.out_channels) \
|
221 |
+
+ ', bias=' + str(self.bias is not None) \
|
222 |
+
+ ', kernel_size=' + str(self.kernel_size) \
|
223 |
+
+ ', stride=' + str(self.stride) \
|
224 |
+
+ ', padding=' + str(self.padding) \
|
225 |
+
+ ', init_criterion=' + str(self.init_criterion) \
|
226 |
+
+ ', weight_init=' + str(self.weight_init) \
|
227 |
+
+ ', seed=' + str(self.seed) \
|
228 |
+
+ ', rotation=' + str(self.rotation) \
|
229 |
+
+ ', q_format=' + str(self.quaternion_format) \
|
230 |
+
+ ', operation=' + str(self.operation) + ')'
|
231 |
+
|
232 |
+
|
233 |
+
class QuaternionTransposeConv(Module):
|
234 |
+
r"""Applies a Quaternion Transposed Convolution (or Deconvolution) to the incoming data."""
|
235 |
+
|
236 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride,
|
237 |
+
dilatation=1, padding=0, output_padding=0, groups=1, bias=True, init_criterion='he',
|
238 |
+
weight_init='quaternion', seed=None, operation='convolution2d', rotation=False,
|
239 |
+
quaternion_format=False):
|
240 |
+
|
241 |
+
super().__init__()
|
242 |
+
|
243 |
+
self.in_channels = in_channels // 4
|
244 |
+
self.out_channels = out_channels // 4
|
245 |
+
self.stride = stride
|
246 |
+
self.padding = padding
|
247 |
+
self.output_padding = output_padding
|
248 |
+
self.groups = groups
|
249 |
+
self.dilatation = dilatation
|
250 |
+
self.init_criterion = init_criterion
|
251 |
+
self.weight_init = weight_init
|
252 |
+
self.seed = seed if seed is not None else np.random.randint(0, 1234)
|
253 |
+
self.rng = RandomState(self.seed)
|
254 |
+
self.operation = operation
|
255 |
+
self.rotation = rotation
|
256 |
+
self.quaternion_format = quaternion_format
|
257 |
+
self.winit = {'quaternion': hp_ops.quaternion_init,
|
258 |
+
'unitary': hp_ops.unitary_init,
|
259 |
+
'random': hp_ops.random_init}[self.weight_init]
|
260 |
+
|
261 |
+
(self.kernel_size, self.w_shape) = hp_ops.get_kernel_and_weight_shape(self.operation,
|
262 |
+
self.out_channels, self.in_channels, kernel_size)
|
263 |
+
|
264 |
+
self.r_weight = Parameter(torch.Tensor(*self.w_shape))
|
265 |
+
self.i_weight = Parameter(torch.Tensor(*self.w_shape))
|
266 |
+
self.j_weight = Parameter(torch.Tensor(*self.w_shape))
|
267 |
+
self.k_weight = Parameter(torch.Tensor(*self.w_shape))
|
268 |
+
|
269 |
+
if bias:
|
270 |
+
self.bias = Parameter(torch.Tensor(out_channels))
|
271 |
+
else:
|
272 |
+
self.register_parameter('bias', None)
|
273 |
+
self.reset_parameters()
|
274 |
+
|
275 |
+
def reset_parameters(self):
|
276 |
+
hp_ops.affect_init_conv(self.r_weight, self.i_weight, self.j_weight, self.k_weight,
|
277 |
+
self.kernel_size, self.winit, self.rng, self.init_criterion)
|
278 |
+
if self.bias is not None:
|
279 |
+
self.bias.data.zero_()
|
280 |
+
|
281 |
+
def forward(self, input):
|
282 |
+
if self.rotation:
|
283 |
+
return hp_ops.quaternion_tranpose_conv_rotation(input, self.r_weight, self.i_weight,
|
284 |
+
self.j_weight, self.k_weight, self.bias, self.stride, self.padding,
|
285 |
+
self.output_padding, self.groups, self.dilatation, self.quaternion_format)
|
286 |
+
else:
|
287 |
+
return hp_ops.quaternion_transpose_conv(input, self.r_weight, self.i_weight, self.j_weight,
|
288 |
+
self.k_weight, self.bias, self.stride, self.padding, self.output_padding,
|
289 |
+
self.groups, self.dilatation)
|
290 |
+
|
291 |
+
def __repr__(self):
|
292 |
+
return self.__class__.__name__ + '(' \
|
293 |
+
+ 'in_channels=' + str(self.in_channels) \
|
294 |
+
+ ', out_channels=' + str(self.out_channels) \
|
295 |
+
+ ', bias=' + str(self.bias is not None) \
|
296 |
+
+ ', kernel_size=' + str(self.kernel_size) \
|
297 |
+
+ ', stride=' + str(self.stride) \
|
298 |
+
+ ', padding=' + str(self.padding) \
|
299 |
+
+ ', dilation=' + str(self.dilation) \
|
300 |
+
+ ', init_criterion=' + str(self.init_criterion) \
|
301 |
+
+ ', weight_init=' + str(self.weight_init) \
|
302 |
+
+ ', seed=' + str(self.seed) \
|
303 |
+
+ ', operation=' + str(self.operation) + ')'
|
304 |
+
|
305 |
+
|
306 |
+
class QuaternionConv(Module):
|
307 |
+
r"""Applies a Quaternion Convolution to the incoming data."""
|
308 |
+
|
309 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride,
|
310 |
+
dilatation=1, padding=0, groups=1, bias=True, init_criterion='glorot',
|
311 |
+
weight_init='quaternion', seed=None, operation='convolution2d', rotation=False, quaternion_format=True, scale=False):
|
312 |
+
|
313 |
+
super().__init__()
|
314 |
+
|
315 |
+
self.in_channels = in_channels // 4
|
316 |
+
self.out_channels = out_channels // 4
|
317 |
+
self.stride = stride
|
318 |
+
self.padding = padding
|
319 |
+
self.groups = groups
|
320 |
+
self.dilatation = dilatation
|
321 |
+
self.init_criterion = init_criterion
|
322 |
+
self.weight_init = weight_init
|
323 |
+
self.seed = seed if seed is not None else np.random.randint(0, 1234)
|
324 |
+
self.rng = RandomState(self.seed)
|
325 |
+
self.operation = operation
|
326 |
+
self.rotation = rotation
|
327 |
+
self.quaternion_format = quaternion_format
|
328 |
+
self.winit = {'quaternion': hp_ops.quaternion_init,
|
329 |
+
'unitary': hp_ops.unitary_init,
|
330 |
+
'random': hp_ops.random_init}[self.weight_init]
|
331 |
+
self.scale = scale
|
332 |
+
|
333 |
+
(self.kernel_size, self.w_shape) = hp_ops.get_kernel_and_weight_shape(self.operation,
|
334 |
+
self.in_channels, self.out_channels, kernel_size)
|
335 |
+
|
336 |
+
self.r_weight = Parameter(torch.Tensor(*self.w_shape))
|
337 |
+
self.i_weight = Parameter(torch.Tensor(*self.w_shape))
|
338 |
+
self.j_weight = Parameter(torch.Tensor(*self.w_shape))
|
339 |
+
self.k_weight = Parameter(torch.Tensor(*self.w_shape))
|
340 |
+
|
341 |
+
if self.scale:
|
342 |
+
self.scale_param = Parameter(torch.Tensor(self.r_weight.shape))
|
343 |
+
else:
|
344 |
+
self.scale_param = None
|
345 |
+
|
346 |
+
if self.rotation:
|
347 |
+
self.zero_kernel = Parameter(torch.zeros(
|
348 |
+
self.r_weight.shape), requires_grad=False)
|
349 |
+
if bias:
|
350 |
+
self.bias = Parameter(torch.Tensor(out_channels))
|
351 |
+
else:
|
352 |
+
self.register_parameter('bias', None)
|
353 |
+
self.reset_parameters()
|
354 |
+
|
355 |
+
def reset_parameters(self):
|
356 |
+
hp_ops.affect_init_conv(self.r_weight, self.i_weight, self.j_weight, self.k_weight,
|
357 |
+
self.kernel_size, self.winit, self.rng, self.init_criterion)
|
358 |
+
if self.scale_param is not None:
|
359 |
+
torch.nn.init.xavier_uniform_(self.scale_param.data)
|
360 |
+
if self.bias is not None:
|
361 |
+
self.bias.data.zero_()
|
362 |
+
|
363 |
+
def forward(self, input):
|
364 |
+
if self.rotation:
|
365 |
+
return hp_ops.quaternion_conv_rotation(input, self.zero_kernel, self.r_weight, self.i_weight, self.j_weight,
|
366 |
+
self.k_weight, self.bias, self.stride, self.padding, self.groups, self.dilatation,
|
367 |
+
self.quaternion_format, self.scale_param)
|
368 |
+
else:
|
369 |
+
return hp_ops.quaternion_conv(input, self.r_weight, self.i_weight, self.j_weight,
|
370 |
+
self.k_weight, self.bias, self.stride, self.padding, self.groups, self.dilatation)
|
371 |
+
|
372 |
+
def __repr__(self):
|
373 |
+
return self.__class__.__name__ + '(' \
|
374 |
+
+ 'in_channels=' + str(self.in_channels) \
|
375 |
+
+ ', out_channels=' + str(self.out_channels) \
|
376 |
+
+ ', bias=' + str(self.bias is not None) \
|
377 |
+
+ ', kernel_size=' + str(self.kernel_size) \
|
378 |
+
+ ', stride=' + str(self.stride) \
|
379 |
+
+ ', padding=' + str(self.padding) \
|
380 |
+
+ ', init_criterion=' + str(self.init_criterion) \
|
381 |
+
+ ', weight_init=' + str(self.weight_init) \
|
382 |
+
+ ', seed=' + str(self.seed) \
|
383 |
+
+ ', rotation=' + str(self.rotation) \
|
384 |
+
+ ', q_format=' + str(self.quaternion_format) \
|
385 |
+
+ ', operation=' + str(self.operation) + ')'
|
386 |
+
|
387 |
+
|
388 |
+
class QuaternionLinearAutograd(Module):
|
389 |
+
r"""Applies a quaternion linear transformation to the incoming data.
|
390 |
+
|
391 |
+
A custom Autograd function is call to drastically reduce the VRAM consumption. Nonetheless, computing time
|
392 |
+
is also slower compared to QuaternionLinear().
|
393 |
+
"""
|
394 |
+
|
395 |
+
def __init__(self, in_features, out_features, bias=True,
|
396 |
+
init_criterion='glorot', weight_init='quaternion',
|
397 |
+
seed=None, rotation=False, quaternion_format=True, scale=False):
|
398 |
+
|
399 |
+
super().__init__()
|
400 |
+
self.in_features = in_features//4
|
401 |
+
self.out_features = out_features//4
|
402 |
+
self.rotation = rotation
|
403 |
+
self.quaternion_format = quaternion_format
|
404 |
+
self.r_weight = Parameter(torch.Tensor(
|
405 |
+
self.in_features, self.out_features))
|
406 |
+
self.i_weight = Parameter(torch.Tensor(
|
407 |
+
self.in_features, self.out_features))
|
408 |
+
self.j_weight = Parameter(torch.Tensor(
|
409 |
+
self.in_features, self.out_features))
|
410 |
+
self.k_weight = Parameter(torch.Tensor(
|
411 |
+
self.in_features, self.out_features))
|
412 |
+
self.scale = scale
|
413 |
+
|
414 |
+
if self.scale:
|
415 |
+
self.scale_param = Parameter(torch.Tensor(
|
416 |
+
self.in_features, self.out_features))
|
417 |
+
else:
|
418 |
+
self.scale_param = None
|
419 |
+
|
420 |
+
if self.rotation:
|
421 |
+
self.zero_kernel = Parameter(torch.zeros(
|
422 |
+
self.r_weight.shape), requires_grad=False)
|
423 |
+
|
424 |
+
if bias:
|
425 |
+
self.bias = Parameter(torch.Tensor(self.out_features*4))
|
426 |
+
else:
|
427 |
+
self.register_parameter('bias', None)
|
428 |
+
self.init_criterion = init_criterion
|
429 |
+
self.weight_init = weight_init
|
430 |
+
self.seed = seed if seed is not None else np.random.randint(0, 1234)
|
431 |
+
self.rng = RandomState(self.seed)
|
432 |
+
self.reset_parameters()
|
433 |
+
|
434 |
+
def reset_parameters(self):
|
435 |
+
winit = {'quaternion': hp_ops.quaternion_init, 'unitary': hp_ops.unitary_init,
|
436 |
+
'random': hp_ops.random_init}[self.weight_init]
|
437 |
+
if self.scale_param is not None:
|
438 |
+
torch.nn.init.xavier_uniform_(self.scale_param.data)
|
439 |
+
if self.bias is not None:
|
440 |
+
self.bias.data.fill_(0)
|
441 |
+
hp_ops.affect_init(self.r_weight, self.i_weight, self.j_weight, self.k_weight, winit,
|
442 |
+
self.rng, self.init_criterion)
|
443 |
+
|
444 |
+
def forward(self, input):
|
445 |
+
# See the autograd section for explanation of what happens here.
|
446 |
+
if self.rotation:
|
447 |
+
return hp_ops.quaternion_linear_rotation(input, self.zero_kernel, self.r_weight, self.i_weight, self.j_weight, self.k_weight, self.bias, self.quaternion_format, self.scale_param)
|
448 |
+
else:
|
449 |
+
return hp_ops.quaternion_linear(input, self.r_weight, self.i_weight, self.j_weight, self.k_weight, self.bias)
|
450 |
+
|
451 |
+
def __repr__(self):
|
452 |
+
return self.__class__.__name__ + '(' \
|
453 |
+
+ 'in_features=' + str(self.in_features) \
|
454 |
+
+ ', out_features=' + str(self.out_features) \
|
455 |
+
+ ', bias=' + str(self.bias is not None) \
|
456 |
+
+ ', init_criterion=' + str(self.init_criterion) \
|
457 |
+
+ ', weight_init=' + str(self.weight_init) \
|
458 |
+
+ ', rotation=' + str(self.rotation) \
|
459 |
+
+ ', seed=' + str(self.seed) + ')'
|
460 |
+
|
461 |
+
|
462 |
+
class QuaternionLinear(Module):
|
463 |
+
r"""Applies a quaternion linear transformation to the incoming data."""
|
464 |
+
|
465 |
+
def __init__(self, in_features, out_features, bias=True,
|
466 |
+
init_criterion='he', weight_init='quaternion',
|
467 |
+
seed=None):
|
468 |
+
|
469 |
+
super().__init__()
|
470 |
+
self.in_features = in_features//4
|
471 |
+
self.out_features = out_features//4
|
472 |
+
self.r_weight = Parameter(torch.Tensor(
|
473 |
+
self.in_features, self.out_features))
|
474 |
+
self.i_weight = Parameter(torch.Tensor(
|
475 |
+
self.in_features, self.out_features))
|
476 |
+
self.j_weight = Parameter(torch.Tensor(
|
477 |
+
self.in_features, self.out_features))
|
478 |
+
self.k_weight = Parameter(torch.Tensor(
|
479 |
+
self.in_features, self.out_features))
|
480 |
+
|
481 |
+
if bias:
|
482 |
+
self.bias = Parameter(torch.Tensor(self.out_features*4))
|
483 |
+
else:
|
484 |
+
self.register_parameter('bias', None)
|
485 |
+
|
486 |
+
self.init_criterion = init_criterion
|
487 |
+
self.weight_init = weight_init
|
488 |
+
self.seed = seed if seed is not None else np.random.randint(0, 1234)
|
489 |
+
self.rng = RandomState(self.seed)
|
490 |
+
self.reset_parameters()
|
491 |
+
|
492 |
+
def reset_parameters(self):
|
493 |
+
winit = {'quaternion': hp_ops.quaternion_init,
|
494 |
+
'unitary': hp_ops.unitary_init}[self.weight_init]
|
495 |
+
if self.bias is not None:
|
496 |
+
self.bias.data.fill_(0)
|
497 |
+
affect_init(self.r_weight, self.i_weight, self.j_weight, self.k_weight, winit,
|
498 |
+
self.rng, self.init_criterion)
|
499 |
+
|
500 |
+
def forward(self, input):
|
501 |
+
# See the autograd section for explanation of what happens here.
|
502 |
+
if input.dim() == 3:
|
503 |
+
T, N, C = input.size()
|
504 |
+
input = input.view(T * N, C)
|
505 |
+
output = hp_ops.QuaternionLinearFunction.apply(
|
506 |
+
input, self.r_weight, self.i_weight, self.j_weight, self.k_weight, self.bias)
|
507 |
+
output = output.view(T, N, output.size(1))
|
508 |
+
elif input.dim() == 2:
|
509 |
+
output = hp_ops.QuaternionLinearFunction.apply(
|
510 |
+
input, self.r_weight, self.i_weight, self.j_weight, self.k_weight, self.bias)
|
511 |
+
else:
|
512 |
+
raise NotImplementedError
|
513 |
+
|
514 |
+
return output
|
515 |
+
|
516 |
+
def __repr__(self):
|
517 |
+
return self.__class__.__name__ + '(' \
|
518 |
+
+ 'in_features=' + str(self.in_features) \
|
519 |
+
+ ', out_features=' + str(self.out_features) \
|
520 |
+
+ ', bias=' + str(self.bias is not None) \
|
521 |
+
+ ', init_criterion=' + str(self.init_criterion) \
|
522 |
+
+ ', weight_init=' + str(self.weight_init) \
|
523 |
+
+ ', seed=' + str(self.seed) + ')'
|
models/hypercomplex_ops.py
ADDED
@@ -0,0 +1,905 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##########################################################
|
2 |
+
# pytorch-qnn v1.0
|
3 |
+
# Titouan Parcollet
|
4 |
+
# LIA, Université d'Avignon et des Pays du Vaucluse
|
5 |
+
# ORKIS, Aix-en-provence
|
6 |
+
# October 2018
|
7 |
+
##########################################################
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from numpy.random import RandomState
|
13 |
+
from scipy.stats import chi
|
14 |
+
from torch.autograd import Variable
|
15 |
+
|
16 |
+
|
17 |
+
def q_normalize(input, channel=1):
|
18 |
+
r = get_r(input)
|
19 |
+
i = get_i(input)
|
20 |
+
j = get_j(input)
|
21 |
+
k = get_k(input)
|
22 |
+
|
23 |
+
norm = torch.sqrt(r*r + i*i + j*j + k*k + 0.0001)
|
24 |
+
r = r / norm
|
25 |
+
i = i / norm
|
26 |
+
j = j / norm
|
27 |
+
k = k / norm
|
28 |
+
|
29 |
+
return torch.cat([r, i, j, k], dim=channel)
|
30 |
+
|
31 |
+
|
32 |
+
def check_input(input):
|
33 |
+
if input.dim() not in {2, 3, 4, 5}:
|
34 |
+
raise RuntimeError(
|
35 |
+
'Quaternion linear accepts only input of dimension 2 or 3. Quaternion conv accepts up to 5 dim '
|
36 |
+
' input.dim = ' + str(input.dim())
|
37 |
+
)
|
38 |
+
|
39 |
+
if input.dim() < 4:
|
40 |
+
nb_hidden = input.size()[-1]
|
41 |
+
else:
|
42 |
+
nb_hidden = input.size()[1]
|
43 |
+
|
44 |
+
if nb_hidden % 4 != 0:
|
45 |
+
raise RuntimeError(
|
46 |
+
'Quaternion Tensors must be divisible by 4.'
|
47 |
+
' input.size()[1] = ' + str(nb_hidden)
|
48 |
+
)
|
49 |
+
#
|
50 |
+
# Getters
|
51 |
+
#
|
52 |
+
|
53 |
+
|
54 |
+
def get_r(input):
|
55 |
+
check_input(input)
|
56 |
+
if input.dim() < 4:
|
57 |
+
nb_hidden = input.size()[-1]
|
58 |
+
else:
|
59 |
+
nb_hidden = input.size()[1]
|
60 |
+
|
61 |
+
if input.dim() == 2:
|
62 |
+
return input.narrow(1, 0, nb_hidden // 4)
|
63 |
+
if input.dim() == 3:
|
64 |
+
return input.narrow(2, 0, nb_hidden // 4)
|
65 |
+
if input.dim() >= 4:
|
66 |
+
return input.narrow(1, 0, nb_hidden // 4)
|
67 |
+
|
68 |
+
|
69 |
+
def get_i(input):
|
70 |
+
if input.dim() < 4:
|
71 |
+
nb_hidden = input.size()[-1]
|
72 |
+
else:
|
73 |
+
nb_hidden = input.size()[1]
|
74 |
+
if input.dim() == 2:
|
75 |
+
return input.narrow(1, nb_hidden // 4, nb_hidden // 4)
|
76 |
+
if input.dim() == 3:
|
77 |
+
return input.narrow(2, nb_hidden // 4, nb_hidden // 4)
|
78 |
+
if input.dim() >= 4:
|
79 |
+
return input.narrow(1, nb_hidden // 4, nb_hidden // 4)
|
80 |
+
|
81 |
+
|
82 |
+
def get_j(input):
|
83 |
+
check_input(input)
|
84 |
+
if input.dim() < 4:
|
85 |
+
nb_hidden = input.size()[-1]
|
86 |
+
else:
|
87 |
+
nb_hidden = input.size()[1]
|
88 |
+
if input.dim() == 2:
|
89 |
+
return input.narrow(1, nb_hidden // 2, nb_hidden // 4)
|
90 |
+
if input.dim() == 3:
|
91 |
+
return input.narrow(2, nb_hidden // 2, nb_hidden // 4)
|
92 |
+
if input.dim() >= 4:
|
93 |
+
return input.narrow(1, nb_hidden // 2, nb_hidden // 4)
|
94 |
+
|
95 |
+
|
96 |
+
def get_k(input):
|
97 |
+
check_input(input)
|
98 |
+
if input.dim() < 4:
|
99 |
+
nb_hidden = input.size()[-1]
|
100 |
+
else:
|
101 |
+
nb_hidden = input.size()[1]
|
102 |
+
if input.dim() == 2:
|
103 |
+
return input.narrow(1, nb_hidden - nb_hidden // 4, nb_hidden // 4)
|
104 |
+
if input.dim() == 3:
|
105 |
+
return input.narrow(2, nb_hidden - nb_hidden // 4, nb_hidden // 4)
|
106 |
+
if input.dim() >= 4:
|
107 |
+
return input.narrow(1, nb_hidden - nb_hidden // 4, nb_hidden // 4)
|
108 |
+
|
109 |
+
|
110 |
+
def get_modulus(input, vector_form=False):
|
111 |
+
check_input(input)
|
112 |
+
r = get_r(input)
|
113 |
+
i = get_i(input)
|
114 |
+
j = get_j(input)
|
115 |
+
k = get_k(input)
|
116 |
+
if vector_form:
|
117 |
+
return torch.sqrt(r * r + i * i + j * j + k * k)
|
118 |
+
else:
|
119 |
+
return torch.sqrt((r * r + i * i + j * j + k * k).sum(dim=0))
|
120 |
+
|
121 |
+
|
122 |
+
def get_normalized(input, eps=0.0001):
|
123 |
+
check_input(input)
|
124 |
+
data_modulus = get_modulus(input)
|
125 |
+
if input.dim() == 2:
|
126 |
+
data_modulus_repeated = data_modulus.repeat(1, 4)
|
127 |
+
elif input.dim() == 3:
|
128 |
+
data_modulus_repeated = data_modulus.repeat(1, 1, 4)
|
129 |
+
return input / (data_modulus_repeated.expand_as(input) + eps)
|
130 |
+
|
131 |
+
|
132 |
+
def quaternion_exp(input):
|
133 |
+
r = get_r(input)
|
134 |
+
i = get_i(input)
|
135 |
+
j = get_j(input)
|
136 |
+
k = get_k(input)
|
137 |
+
|
138 |
+
norm_v = torch.sqrt(i*i+j*j+k*k) + 0.0001
|
139 |
+
exp = torch.exp(r)
|
140 |
+
|
141 |
+
r = torch.cos(norm_v)
|
142 |
+
i = (i / norm_v) * torch.sin(norm_v)
|
143 |
+
j = (j / norm_v) * torch.sin(norm_v)
|
144 |
+
k = (k / norm_v) * torch.sin(norm_v)
|
145 |
+
|
146 |
+
return torch.cat([exp*r, exp*i, exp*j, exp*k], dim=1)
|
147 |
+
|
148 |
+
|
149 |
+
def kronecker_conv(input, r_weight, i_weight, j_weight, k_weight, bias, stride,
|
150 |
+
padding, groups, dilatation, learn_A, cuda, first_layer=False): # ,
|
151 |
+
# mat1_learn, mat2_learn, mat3_learn, mat4_learn):
|
152 |
+
"""Applies a quaternion convolution to the incoming data:"""
|
153 |
+
# Define the initial matrices to build the Hamilton product
|
154 |
+
if first_layer:
|
155 |
+
mat1 = torch.zeros((4, 4), requires_grad=False).view(4, 4, 1, 1)
|
156 |
+
else:
|
157 |
+
mat1 = torch.eye(4, requires_grad=False).view(4, 4, 1, 1)
|
158 |
+
|
159 |
+
# Define the four matrices that summed up build the Hamilton product rule.
|
160 |
+
mat2 = torch.tensor([[0, -1, 0, 0],
|
161 |
+
[1, 0, 0, 0],
|
162 |
+
[0, 0, 0, -1],
|
163 |
+
[0, 0, 1, 0]], requires_grad=False).view(4, 4, 1, 1)
|
164 |
+
mat3 = torch.tensor([[0, 0, -1, 0],
|
165 |
+
[0, 0, 0, 1],
|
166 |
+
[1, 0, 0, 0],
|
167 |
+
[0, -1, 0, 0]], requires_grad=False).view(4, 4, 1, 1)
|
168 |
+
mat4 = torch.tensor([[0, 0, 0, -1],
|
169 |
+
[0, 0, -1, 0],
|
170 |
+
[0, 1, 0, 0],
|
171 |
+
[1, 0, 0, 0]], requires_grad=False).view(4, 4, 1, 1)
|
172 |
+
|
173 |
+
if cuda:
|
174 |
+
mat1, mat2, mat3, mat4 = mat1.cuda(), mat2.cuda(), mat3.cuda(), mat4.cuda()
|
175 |
+
|
176 |
+
# Sum of kronecker product between the four matrices and the learnable weights.
|
177 |
+
cat_kernels_4_quaternion = torch.kron(mat1, r_weight) + \
|
178 |
+
torch.kron(mat2, i_weight) + \
|
179 |
+
torch.kron(mat3, j_weight) + \
|
180 |
+
torch.kron(mat4, k_weight)
|
181 |
+
|
182 |
+
if input.dim() == 3:
|
183 |
+
convfunc = F.conv1d
|
184 |
+
elif input.dim() == 4:
|
185 |
+
convfunc = F.conv2d
|
186 |
+
elif input.dim() == 5:
|
187 |
+
convfunc = F.conv3d
|
188 |
+
else:
|
189 |
+
raise Exception('The convolutional input is either 3, 4 or 5 dimensions.'
|
190 |
+
' input.dim = ' + str(input.dim()))
|
191 |
+
|
192 |
+
return convfunc(input, cat_kernels_4_quaternion, bias, stride, padding, dilatation, groups)
|
193 |
+
|
194 |
+
|
195 |
+
def quaternion_conv(input, r_weight, i_weight, j_weight, k_weight, bias, stride,
|
196 |
+
padding, groups, dilatation):
|
197 |
+
"""Applies a quaternion convolution to the incoming data:"""
|
198 |
+
|
199 |
+
cat_kernels_4_r = torch.cat(
|
200 |
+
[r_weight, -i_weight, -j_weight, -k_weight], dim=1)
|
201 |
+
cat_kernels_4_i = torch.cat(
|
202 |
+
[i_weight, r_weight, -k_weight, j_weight], dim=1)
|
203 |
+
cat_kernels_4_j = torch.cat(
|
204 |
+
[j_weight, k_weight, r_weight, -i_weight], dim=1)
|
205 |
+
cat_kernels_4_k = torch.cat(
|
206 |
+
[k_weight, -j_weight, i_weight, r_weight], dim=1)
|
207 |
+
|
208 |
+
cat_kernels_4_quaternion = torch.cat(
|
209 |
+
[cat_kernels_4_r, cat_kernels_4_i, cat_kernels_4_j, cat_kernels_4_k], dim=0)
|
210 |
+
|
211 |
+
if input.dim() == 3:
|
212 |
+
convfunc = F.conv1d
|
213 |
+
elif input.dim() == 4:
|
214 |
+
convfunc = F.conv2d
|
215 |
+
elif input.dim() == 5:
|
216 |
+
convfunc = F.conv3d
|
217 |
+
else:
|
218 |
+
raise Exception('The convolutional input is either 3, 4 or 5 dimensions.'
|
219 |
+
' input.dim = ' + str(input.dim()))
|
220 |
+
|
221 |
+
return convfunc(input, cat_kernels_4_quaternion, bias, stride, padding, dilatation, groups)
|
222 |
+
|
223 |
+
|
224 |
+
def quaternion_transpose_conv(input, r_weight, i_weight, j_weight, k_weight, bias, stride,
|
225 |
+
padding, output_padding, groups, dilatation):
|
226 |
+
"""Applies a quaternion transposed convolution to the incoming data:"""
|
227 |
+
|
228 |
+
cat_kernels_4_r = torch.cat(
|
229 |
+
[r_weight, -i_weight, -j_weight, -k_weight], dim=1)
|
230 |
+
cat_kernels_4_i = torch.cat(
|
231 |
+
[i_weight, r_weight, -k_weight, j_weight], dim=1)
|
232 |
+
cat_kernels_4_j = torch.cat(
|
233 |
+
[j_weight, k_weight, r_weight, -i_weight], dim=1)
|
234 |
+
cat_kernels_4_k = torch.cat(
|
235 |
+
[k_weight, -j_weight, i_weight, r_weight], dim=1)
|
236 |
+
cat_kernels_4_quaternion = torch.cat(
|
237 |
+
[cat_kernels_4_r, cat_kernels_4_i, cat_kernels_4_j, cat_kernels_4_k], dim=0)
|
238 |
+
|
239 |
+
if input.dim() == 3:
|
240 |
+
convfunc = F.conv_transpose1d
|
241 |
+
elif input.dim() == 4:
|
242 |
+
convfunc = F.conv_transpose2d
|
243 |
+
elif input.dim() == 5:
|
244 |
+
convfunc = F.conv_transpose3d
|
245 |
+
else:
|
246 |
+
raise Exception('The convolutional input is either 3, 4 or 5 dimensions.'
|
247 |
+
' input.dim = ' + str(input.dim()))
|
248 |
+
|
249 |
+
return convfunc(input, cat_kernels_4_quaternion,
|
250 |
+
bias, stride, padding, output_padding, groups, dilatation)
|
251 |
+
|
252 |
+
|
253 |
+
def quaternion_conv_rotation(input, zero_kernel, r_weight, i_weight, j_weight, k_weight, bias, stride,
|
254 |
+
padding, groups, dilatation, quaternion_format, scale=None):
|
255 |
+
"""Applies a quaternion rotation and convolution transformation to the incoming data:
|
256 |
+
|
257 |
+
The rotation W*x*W^t can be replaced by R*x following:
|
258 |
+
https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
|
259 |
+
|
260 |
+
Works for unitary and non unitary weights.
|
261 |
+
|
262 |
+
The initial size of the input must be a multiple of 3 if quaternion_format = False and
|
263 |
+
4 if quaternion_format = True.
|
264 |
+
"""
|
265 |
+
|
266 |
+
square_r = (r_weight*r_weight)
|
267 |
+
square_i = (i_weight*i_weight)
|
268 |
+
square_j = (j_weight*j_weight)
|
269 |
+
square_k = (k_weight*k_weight)
|
270 |
+
|
271 |
+
norm = torch.sqrt(square_r+square_i+square_j+square_k + 0.0001)
|
272 |
+
|
273 |
+
# print(norm)
|
274 |
+
|
275 |
+
r_n_weight = (r_weight / norm)
|
276 |
+
i_n_weight = (i_weight / norm)
|
277 |
+
j_n_weight = (j_weight / norm)
|
278 |
+
k_n_weight = (k_weight / norm)
|
279 |
+
|
280 |
+
norm_factor = 2.0
|
281 |
+
|
282 |
+
square_i = norm_factor*(i_n_weight*i_n_weight)
|
283 |
+
square_j = norm_factor*(j_n_weight*j_n_weight)
|
284 |
+
square_k = norm_factor*(k_n_weight*k_n_weight)
|
285 |
+
|
286 |
+
ri = (norm_factor*r_n_weight*i_n_weight)
|
287 |
+
rj = (norm_factor*r_n_weight*j_n_weight)
|
288 |
+
rk = (norm_factor*r_n_weight*k_n_weight)
|
289 |
+
|
290 |
+
ij = (norm_factor*i_n_weight*j_n_weight)
|
291 |
+
ik = (norm_factor*i_n_weight*k_n_weight)
|
292 |
+
|
293 |
+
jk = (norm_factor*j_n_weight*k_n_weight)
|
294 |
+
|
295 |
+
if quaternion_format:
|
296 |
+
if scale is not None:
|
297 |
+
rot_kernel_1 = torch.cat([zero_kernel, scale * (1.0 - (square_j + square_k)),
|
298 |
+
scale * (ij-rk), scale * (ik+rj)], dim=1)
|
299 |
+
rot_kernel_2 = torch.cat([zero_kernel, scale * (ij+rk), scale *
|
300 |
+
(1.0 - (square_i + square_k)), scale * (jk-ri)], dim=1)
|
301 |
+
rot_kernel_3 = torch.cat([zero_kernel, scale * (ik-rj), scale * (jk+ri),
|
302 |
+
scale * (1.0 - (square_i + square_j))], dim=1)
|
303 |
+
else:
|
304 |
+
rot_kernel_1 = torch.cat(
|
305 |
+
[zero_kernel, (1.0 - (square_j + square_k)), (ij-rk), (ik+rj)], dim=1)
|
306 |
+
rot_kernel_2 = torch.cat(
|
307 |
+
[zero_kernel, (ij+rk), (1.0 - (square_i + square_k)), (jk-ri)], dim=1)
|
308 |
+
rot_kernel_3 = torch.cat(
|
309 |
+
[zero_kernel, (ik-rj), (jk+ri), (1.0 - (square_i + square_j))], dim=1)
|
310 |
+
|
311 |
+
zero_kernel2 = torch.cat(
|
312 |
+
[zero_kernel, zero_kernel, zero_kernel, zero_kernel], dim=1)
|
313 |
+
global_rot_kernel = torch.cat(
|
314 |
+
[zero_kernel2, rot_kernel_1, rot_kernel_2, rot_kernel_3], dim=0)
|
315 |
+
|
316 |
+
else:
|
317 |
+
if scale is not None:
|
318 |
+
rot_kernel_1 = torch.cat([scale * (1.0 - (square_j + square_k)),
|
319 |
+
scale * (ij-rk), scale * (ik+rj)], dim=0)
|
320 |
+
rot_kernel_2 = torch.cat(
|
321 |
+
[scale * (ij+rk), scale * (1.0 - (square_i + square_k)), scale * (jk-ri)], dim=0)
|
322 |
+
rot_kernel_3 = torch.cat([scale * (ik-rj), scale * (jk+ri), scale *
|
323 |
+
(1.0 - (square_i + square_j))], dim=0)
|
324 |
+
else:
|
325 |
+
rot_kernel_1 = torch.cat(
|
326 |
+
[1.0 - (square_j + square_k), (ij-rk), (ik+rj)], dim=0)
|
327 |
+
rot_kernel_2 = torch.cat(
|
328 |
+
[(ij+rk), 1.0 - (square_i + square_k), (jk-ri)], dim=0)
|
329 |
+
rot_kernel_3 = torch.cat(
|
330 |
+
[(ik-rj), (jk+ri), (1.0 - (square_i + square_j))], dim=0)
|
331 |
+
|
332 |
+
global_rot_kernel = torch.cat(
|
333 |
+
[rot_kernel_1, rot_kernel_2, rot_kernel_3], dim=0)
|
334 |
+
|
335 |
+
# print(input.shape)
|
336 |
+
# print(square_r.shape)
|
337 |
+
# print(global_rot_kernel.shape)
|
338 |
+
|
339 |
+
if input.dim() == 3:
|
340 |
+
convfunc = F.conv1d
|
341 |
+
elif input.dim() == 4:
|
342 |
+
convfunc = F.conv2d
|
343 |
+
elif input.dim() == 5:
|
344 |
+
convfunc = F.conv3d
|
345 |
+
else:
|
346 |
+
raise Exception('The convolutional input is either 3, 4 or 5 dimensions.'
|
347 |
+
' input.dim = ' + str(input.dim()))
|
348 |
+
|
349 |
+
return convfunc(input, global_rot_kernel, bias, stride, padding, dilatation, groups)
|
350 |
+
|
351 |
+
|
352 |
+
def quaternion_transpose_conv_rotation(
|
353 |
+
input, zero_kernel, r_weight, i_weight, j_weight, k_weight, bias, stride,
|
354 |
+
padding, output_padding, groups, dilatation, quaternion_format):
|
355 |
+
"""Applies a quaternion rotation and transposed convolution transformation to the incoming data:
|
356 |
+
|
357 |
+
The rotation W*x*W^t can be replaced by R*x following:
|
358 |
+
https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
|
359 |
+
|
360 |
+
Works for unitary and non unitary weights.
|
361 |
+
|
362 |
+
The initial size of the input must be a multiple of 3 if quaternion_format = False and
|
363 |
+
4 if quaternion_format = True.
|
364 |
+
"""
|
365 |
+
|
366 |
+
square_r = (r_weight*r_weight)
|
367 |
+
square_i = (i_weight*i_weight)
|
368 |
+
square_j = (j_weight*j_weight)
|
369 |
+
square_k = (k_weight*k_weight)
|
370 |
+
|
371 |
+
norm = torch.sqrt(square_r+square_i+square_j+square_k + 0.0001)
|
372 |
+
|
373 |
+
r_weight = (r_weight / norm)
|
374 |
+
i_weight = (i_weight / norm)
|
375 |
+
j_weight = (j_weight / norm)
|
376 |
+
k_weight = (k_weight / norm)
|
377 |
+
|
378 |
+
norm_factor = 2.0
|
379 |
+
|
380 |
+
square_i = norm_factor*(i_weight*i_weight)
|
381 |
+
square_j = norm_factor*(j_weight*j_weight)
|
382 |
+
square_k = norm_factor*(k_weight*k_weight)
|
383 |
+
|
384 |
+
ri = (norm_factor*r_weight*i_weight)
|
385 |
+
rj = (norm_factor*r_weight*j_weight)
|
386 |
+
rk = (norm_factor*r_weight*k_weight)
|
387 |
+
|
388 |
+
ij = (norm_factor*i_weight*j_weight)
|
389 |
+
ik = (norm_factor*i_weight*k_weight)
|
390 |
+
|
391 |
+
jk = (norm_factor*j_weight*k_weight)
|
392 |
+
|
393 |
+
if quaternion_format:
|
394 |
+
rot_kernel_1 = torch.cat(
|
395 |
+
[zero_kernel, 1.0 - (square_j + square_k), ij-rk, ik+rj], dim=1)
|
396 |
+
rot_kernel_2 = torch.cat(
|
397 |
+
[zero_kernel, ij+rk, 1.0 - (square_i + square_k), jk-ri], dim=1)
|
398 |
+
rot_kernel_3 = torch.cat(
|
399 |
+
[zero_kernel, ik-rj, jk+ri, 1.0 - (square_i + square_j)], dim=1)
|
400 |
+
|
401 |
+
zero_kernel2 = torch.zeros(rot_kernel_1.shape).cuda()
|
402 |
+
global_rot_kernel = torch.cat(
|
403 |
+
[zero_kernel2, rot_kernel_1, rot_kernel_2, rot_kernel_3], dim=0)
|
404 |
+
else:
|
405 |
+
rot_kernel_1 = torch.cat(
|
406 |
+
[1.0 - (square_j + square_k), ij-rk, ik+rj], dim=1)
|
407 |
+
rot_kernel_2 = torch.cat(
|
408 |
+
[ij+rk, 1.0 - (square_i + square_k), jk-ri], dim=1)
|
409 |
+
rot_kernel_3 = torch.cat(
|
410 |
+
[ik-rj, jk+ri, 1.0 - (square_i + square_j)], dim=1)
|
411 |
+
global_rot_kernel = torch.cat(
|
412 |
+
[rot_kernel_1, rot_kernel_2, rot_kernel_3], dim=0)
|
413 |
+
|
414 |
+
if input.dim() == 3:
|
415 |
+
convfunc = F.conv_transpose1d
|
416 |
+
elif input.dim() == 4:
|
417 |
+
convfunc = F.conv_transpose2d
|
418 |
+
elif input.dim() == 5:
|
419 |
+
convfunc = F.conv_transpose3d
|
420 |
+
else:
|
421 |
+
raise Exception('The convolutional input is either 3, 4 or 5 dimensions.'
|
422 |
+
' input.dim = ' + str(input.dim()))
|
423 |
+
|
424 |
+
return convfunc(input, cat_kernels_4_quaternion, bias, stride, padding, output_padding, groups, dilatation)
|
425 |
+
|
426 |
+
|
427 |
+
def quaternion_linear(input, r_weight, i_weight, j_weight, k_weight, bias=True):
|
428 |
+
"""Applies a quaternion linear transformation to the incoming data:
|
429 |
+
|
430 |
+
It is important to notice that the forward phase of a QNN is defined
|
431 |
+
as W * Inputs (with * equal to the Hamilton product). The constructed
|
432 |
+
cat_kernels_4_quaternion is a modified version of the quaternion representation
|
433 |
+
so when we do torch.mm(Input,W) it's equivalent to W * Inputs.
|
434 |
+
"""
|
435 |
+
|
436 |
+
cat_kernels_4_r = torch.cat(
|
437 |
+
[r_weight, -i_weight, -j_weight, -k_weight], dim=0)
|
438 |
+
cat_kernels_4_i = torch.cat(
|
439 |
+
[i_weight, r_weight, -k_weight, j_weight], dim=0)
|
440 |
+
cat_kernels_4_j = torch.cat(
|
441 |
+
[j_weight, k_weight, r_weight, -i_weight], dim=0)
|
442 |
+
cat_kernels_4_k = torch.cat(
|
443 |
+
[k_weight, -j_weight, i_weight, r_weight], dim=0)
|
444 |
+
cat_kernels_4_quaternion = torch.cat(
|
445 |
+
[cat_kernels_4_r, cat_kernels_4_i, cat_kernels_4_j, cat_kernels_4_k], dim=1)
|
446 |
+
|
447 |
+
if input.dim() == 2:
|
448 |
+
|
449 |
+
if bias is not None:
|
450 |
+
return torch.addmm(bias, input, cat_kernels_4_quaternion)
|
451 |
+
else:
|
452 |
+
return torch.mm(input, cat_kernels_4_quaternion)
|
453 |
+
else:
|
454 |
+
output = torch.matmul(input, cat_kernels_4_quaternion)
|
455 |
+
if bias is not None:
|
456 |
+
return output+bias
|
457 |
+
else:
|
458 |
+
return output
|
459 |
+
|
460 |
+
|
461 |
+
def quaternion_linear_rotation(input, zero_kernel, r_weight, i_weight, j_weight, k_weight, bias=None,
|
462 |
+
quaternion_format=False, scale=None):
|
463 |
+
"""Applies a quaternion rotation transformation to the incoming data:
|
464 |
+
|
465 |
+
The rotation W*x*W^t can be replaced by R*x following:
|
466 |
+
https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
|
467 |
+
|
468 |
+
Works for unitary and non unitary weights.
|
469 |
+
|
470 |
+
The initial size of the input must be a multiple of 3 if quaternion_format = False and
|
471 |
+
4 if quaternion_format = True.
|
472 |
+
"""
|
473 |
+
|
474 |
+
square_r = (r_weight*r_weight)
|
475 |
+
square_i = (i_weight*i_weight)
|
476 |
+
square_j = (j_weight*j_weight)
|
477 |
+
square_k = (k_weight*k_weight)
|
478 |
+
|
479 |
+
norm = torch.sqrt(square_r+square_i+square_j+square_k + 0.0001)
|
480 |
+
|
481 |
+
r_n_weight = (r_weight / norm)
|
482 |
+
i_n_weight = (i_weight / norm)
|
483 |
+
j_n_weight = (j_weight / norm)
|
484 |
+
k_n_weight = (k_weight / norm)
|
485 |
+
|
486 |
+
norm_factor = 2.0
|
487 |
+
|
488 |
+
square_i = norm_factor*(i_n_weight*i_n_weight)
|
489 |
+
square_j = norm_factor*(j_n_weight*j_n_weight)
|
490 |
+
square_k = norm_factor*(k_n_weight*k_n_weight)
|
491 |
+
|
492 |
+
ri = (norm_factor*r_n_weight*i_n_weight)
|
493 |
+
rj = (norm_factor*r_n_weight*j_n_weight)
|
494 |
+
rk = (norm_factor*r_n_weight*k_n_weight)
|
495 |
+
|
496 |
+
ij = (norm_factor*i_n_weight*j_n_weight)
|
497 |
+
ik = (norm_factor*i_n_weight*k_n_weight)
|
498 |
+
|
499 |
+
jk = (norm_factor*j_n_weight*k_n_weight)
|
500 |
+
|
501 |
+
if quaternion_format:
|
502 |
+
if scale is not None:
|
503 |
+
rot_kernel_1 = torch.cat([zero_kernel, scale * (1.0 - (square_j + square_k)),
|
504 |
+
scale * (ij-rk), scale * (ik+rj)], dim=0)
|
505 |
+
rot_kernel_2 = torch.cat([zero_kernel, scale * (ij+rk), scale *
|
506 |
+
(1.0 - (square_i + square_k)), scale * (jk-ri)], dim=0)
|
507 |
+
rot_kernel_3 = torch.cat([zero_kernel, scale * (ik-rj), scale * (jk+ri),
|
508 |
+
scale * (1.0 - (square_i + square_j))], dim=0)
|
509 |
+
else:
|
510 |
+
rot_kernel_1 = torch.cat(
|
511 |
+
[zero_kernel, (1.0 - (square_j + square_k)), (ij-rk), (ik+rj)], dim=0)
|
512 |
+
rot_kernel_2 = torch.cat(
|
513 |
+
[zero_kernel, (ij+rk), (1.0 - (square_i + square_k)), (jk-ri)], dim=0)
|
514 |
+
rot_kernel_3 = torch.cat(
|
515 |
+
[zero_kernel, (ik-rj), (jk+ri), (1.0 - (square_i + square_j))], dim=0)
|
516 |
+
|
517 |
+
zero_kernel2 = torch.cat(
|
518 |
+
[zero_kernel, zero_kernel, zero_kernel, zero_kernel], dim=0)
|
519 |
+
global_rot_kernel = torch.cat(
|
520 |
+
[zero_kernel2, rot_kernel_1, rot_kernel_2, rot_kernel_3], dim=1)
|
521 |
+
|
522 |
+
else:
|
523 |
+
if scale is not None:
|
524 |
+
rot_kernel_1 = torch.cat([scale * (1.0 - (square_j + square_k)),
|
525 |
+
scale * (ij-rk), scale * (ik+rj)], dim=0)
|
526 |
+
rot_kernel_2 = torch.cat(
|
527 |
+
[scale * (ij+rk), scale * (1.0 - (square_i + square_k)), scale * (jk-ri)], dim=0)
|
528 |
+
rot_kernel_3 = torch.cat([scale * (ik-rj), scale * (jk+ri), scale *
|
529 |
+
(1.0 - (square_i + square_j))], dim=0)
|
530 |
+
else:
|
531 |
+
rot_kernel_1 = torch.cat(
|
532 |
+
[1.0 - (square_j + square_k), (ij-rk), (ik+rj)], dim=0)
|
533 |
+
rot_kernel_2 = torch.cat(
|
534 |
+
[(ij+rk), 1.0 - (square_i + square_k), (jk-ri)], dim=0)
|
535 |
+
rot_kernel_3 = torch.cat(
|
536 |
+
[(ik-rj), (jk+ri), (1.0 - (square_i + square_j))], dim=0)
|
537 |
+
|
538 |
+
global_rot_kernel = torch.cat(
|
539 |
+
[rot_kernel_1, rot_kernel_2, rot_kernel_3], dim=1)
|
540 |
+
|
541 |
+
if input.dim() == 2:
|
542 |
+
if bias is not None:
|
543 |
+
return torch.addmm(bias, input, global_rot_kernel)
|
544 |
+
else:
|
545 |
+
return torch.mm(input, global_rot_kernel)
|
546 |
+
else:
|
547 |
+
output = torch.matmul(input, global_rot_kernel)
|
548 |
+
if bias is not None:
|
549 |
+
return output+bias
|
550 |
+
else:
|
551 |
+
return output
|
552 |
+
|
553 |
+
|
554 |
+
# Custom AUTOGRAD for lower VRAM consumption
|
555 |
+
class QuaternionLinearFunction(torch.autograd.Function):
|
556 |
+
@staticmethod
|
557 |
+
def forward(ctx, input, r_weight, i_weight, j_weight, k_weight, bias=None):
|
558 |
+
ctx.save_for_backward(input, r_weight, i_weight,
|
559 |
+
j_weight, k_weight, bias)
|
560 |
+
check_input(input)
|
561 |
+
cat_kernels_4_r = torch.cat(
|
562 |
+
[r_weight, -i_weight, -j_weight, -k_weight], dim=0)
|
563 |
+
cat_kernels_4_i = torch.cat(
|
564 |
+
[i_weight, r_weight, -k_weight, j_weight], dim=0)
|
565 |
+
cat_kernels_4_j = torch.cat(
|
566 |
+
[j_weight, k_weight, r_weight, -i_weight], dim=0)
|
567 |
+
cat_kernels_4_k = torch.cat(
|
568 |
+
[k_weight, -j_weight, i_weight, r_weight], dim=0)
|
569 |
+
cat_kernels_4_quaternion = torch.cat(
|
570 |
+
[cat_kernels_4_r, cat_kernels_4_i, cat_kernels_4_j, cat_kernels_4_k], dim=1)
|
571 |
+
if input.dim() == 2:
|
572 |
+
if bias is not None:
|
573 |
+
return torch.addmm(bias, input, cat_kernels_4_quaternion)
|
574 |
+
else:
|
575 |
+
return torch.mm(input, cat_kernels_4_quaternion)
|
576 |
+
else:
|
577 |
+
output = torch.matmul(input, cat_kernels_4_quaternion)
|
578 |
+
if bias is not None:
|
579 |
+
return output+bias
|
580 |
+
else:
|
581 |
+
return output
|
582 |
+
|
583 |
+
# This function has only a single output, so it gets only one gradient
|
584 |
+
@staticmethod
|
585 |
+
def backward(ctx, grad_output):
|
586 |
+
input, r_weight, i_weight, j_weight, k_weight, bias = ctx.saved_tensors
|
587 |
+
grad_input = grad_weight_r = grad_weight_i = grad_weight_j = grad_weight_k = grad_bias = None
|
588 |
+
|
589 |
+
input_r = torch.cat([r_weight, -i_weight, -j_weight, -k_weight], dim=0)
|
590 |
+
input_i = torch.cat([i_weight, r_weight, -k_weight, j_weight], dim=0)
|
591 |
+
input_j = torch.cat([j_weight, k_weight, r_weight, -i_weight], dim=0)
|
592 |
+
input_k = torch.cat([k_weight, -j_weight, i_weight, r_weight], dim=0)
|
593 |
+
cat_kernels_4_quaternion_T = Variable(
|
594 |
+
torch.cat([input_r, input_i, input_j, input_k], dim=1).permute(1, 0), requires_grad=False)
|
595 |
+
|
596 |
+
r = get_r(input)
|
597 |
+
i = get_i(input)
|
598 |
+
j = get_j(input)
|
599 |
+
k = get_k(input)
|
600 |
+
input_r = torch.cat([r, -i, -j, -k], dim=0)
|
601 |
+
input_i = torch.cat([i, r, -k, j], dim=0)
|
602 |
+
input_j = torch.cat([j, k, r, -i], dim=0)
|
603 |
+
input_k = torch.cat([k, -j, i, r], dim=0)
|
604 |
+
input_mat = Variable(
|
605 |
+
torch.cat([input_r, input_i, input_j, input_k], dim=1), requires_grad=False)
|
606 |
+
|
607 |
+
r = get_r(grad_output)
|
608 |
+
i = get_i(grad_output)
|
609 |
+
j = get_j(grad_output)
|
610 |
+
k = get_k(grad_output)
|
611 |
+
input_r = torch.cat([r, i, j, k], dim=1)
|
612 |
+
input_i = torch.cat([-i, r, k, -j], dim=1)
|
613 |
+
input_j = torch.cat([-j, -k, r, i], dim=1)
|
614 |
+
input_k = torch.cat([-k, j, -i, r], dim=1)
|
615 |
+
grad_mat = torch.cat([input_r, input_i, input_j, input_k], dim=0)
|
616 |
+
|
617 |
+
if ctx.needs_input_grad[0]:
|
618 |
+
grad_input = grad_output.mm(cat_kernels_4_quaternion_T)
|
619 |
+
if ctx.needs_input_grad[1]:
|
620 |
+
grad_weight = grad_mat.permute(1, 0).mm(input_mat).permute(1, 0)
|
621 |
+
unit_size_x = r_weight.size(0)
|
622 |
+
unit_size_y = r_weight.size(1)
|
623 |
+
grad_weight_r = grad_weight.narrow(
|
624 |
+
0, 0, unit_size_x).narrow(1, 0, unit_size_y)
|
625 |
+
grad_weight_i = grad_weight.narrow(
|
626 |
+
0, 0, unit_size_x).narrow(1, unit_size_y, unit_size_y)
|
627 |
+
grad_weight_j = grad_weight.narrow(
|
628 |
+
0, 0, unit_size_x).narrow(1, unit_size_y*2, unit_size_y)
|
629 |
+
grad_weight_k = grad_weight.narrow(
|
630 |
+
0, 0, unit_size_x).narrow(1, unit_size_y*3, unit_size_y)
|
631 |
+
if ctx.needs_input_grad[5]:
|
632 |
+
grad_bias = grad_output.sum(0).squeeze(0)
|
633 |
+
|
634 |
+
return grad_input, grad_weight_r, grad_weight_i, grad_weight_j, grad_weight_k, grad_bias
|
635 |
+
|
636 |
+
|
637 |
+
def hamilton_product(q0, q1):
|
638 |
+
"""
|
639 |
+
Applies a Hamilton product q0 * q1:
|
640 |
+
Shape:
|
641 |
+
- q0, q1 should be (batch_size, quaternion_number)
|
642 |
+
(rr' - xx' - yy' - zz') +
|
643 |
+
(rx' + xr' + yz' - zy')i +
|
644 |
+
(ry' - xz' + yr' + zx')j +
|
645 |
+
(rz' + xy' - yx' + zr')k +
|
646 |
+
"""
|
647 |
+
|
648 |
+
q1_r = get_r(q1)
|
649 |
+
q1_i = get_i(q1)
|
650 |
+
q1_j = get_j(q1)
|
651 |
+
q1_k = get_k(q1)
|
652 |
+
|
653 |
+
# rr', xx', yy', and zz'
|
654 |
+
r_base = torch.mul(q0, q1)
|
655 |
+
# (rr' - xx' - yy' - zz')
|
656 |
+
r = get_r(r_base) - get_i(r_base) - get_j(r_base) - get_k(r_base)
|
657 |
+
|
658 |
+
# rx', xr', yz', and zy'
|
659 |
+
i_base = torch.mul(q0, torch.cat([q1_i, q1_r, q1_k, q1_j], dim=1))
|
660 |
+
# (rx' + xr' + yz' - zy')
|
661 |
+
i = get_r(i_base) + get_i(i_base) + get_j(i_base) - get_k(i_base)
|
662 |
+
|
663 |
+
# ry', xz', yr', and zx'
|
664 |
+
j_base = torch.mul(q0, torch.cat([q1_j, q1_k, q1_r, q1_i], dim=1))
|
665 |
+
# (rx' + xr' + yz' - zy')
|
666 |
+
j = get_r(j_base) - get_i(j_base) + get_j(j_base) + get_k(j_base)
|
667 |
+
|
668 |
+
# rz', xy', yx', and zr'
|
669 |
+
k_base = torch.mul(q0, torch.cat([q1_k, q1_j, q1_i, q1_r], dim=1))
|
670 |
+
# (rx' + xr' + yz' - zy')
|
671 |
+
k = get_r(k_base) + get_i(k_base) - get_j(k_base) + get_k(k_base)
|
672 |
+
|
673 |
+
return torch.cat([r, i, j, k], dim=1)
|
674 |
+
|
675 |
+
#
|
676 |
+
# PARAMETERS INITIALIZATION
|
677 |
+
#
|
678 |
+
|
679 |
+
|
680 |
+
def unitary_init(in_features, out_features, rng, kernel_size=None, criterion='he'):
|
681 |
+
if kernel_size is not None:
|
682 |
+
receptive_field = np.prod(kernel_size)
|
683 |
+
fan_in = in_features * receptive_field
|
684 |
+
fan_out = out_features * receptive_field
|
685 |
+
else:
|
686 |
+
fan_in = in_features
|
687 |
+
fan_out = out_features
|
688 |
+
|
689 |
+
if kernel_size is None:
|
690 |
+
kernel_shape = (in_features, out_features)
|
691 |
+
else:
|
692 |
+
if type(kernel_size) is int:
|
693 |
+
kernel_shape = (out_features, in_features) + tuple((kernel_size,))
|
694 |
+
else:
|
695 |
+
kernel_shape = (out_features, in_features) + (*kernel_size,)
|
696 |
+
|
697 |
+
number_of_weights = np.prod(kernel_shape)
|
698 |
+
v_r = np.random.uniform(-1.0, 1.0, number_of_weights)
|
699 |
+
v_i = np.random.uniform(-1.0, 1.0, number_of_weights)
|
700 |
+
v_j = np.random.uniform(-1.0, 1.0, number_of_weights)
|
701 |
+
v_k = np.random.uniform(-1.0, 1.0, number_of_weights)
|
702 |
+
|
703 |
+
# Unitary quaternion
|
704 |
+
for i in range(0, number_of_weights):
|
705 |
+
norm = np.sqrt(v_r[i]**2 + v_i[i]**2 + v_j[i]**2 + v_k[i]**2)+0.0001
|
706 |
+
v_r[i] /= norm
|
707 |
+
v_i[i] /= norm
|
708 |
+
v_j[i] /= norm
|
709 |
+
v_k[i] /= norm
|
710 |
+
v_r = v_r.reshape(kernel_shape)
|
711 |
+
v_i = v_i.reshape(kernel_shape)
|
712 |
+
v_j = v_j.reshape(kernel_shape)
|
713 |
+
v_k = v_k.reshape(kernel_shape)
|
714 |
+
|
715 |
+
return (v_r, v_i, v_j, v_k)
|
716 |
+
|
717 |
+
|
718 |
+
def random_init(in_features, out_features, rng, kernel_size=None, criterion='glorot'):
|
719 |
+
if kernel_size is not None:
|
720 |
+
receptive_field = np.prod(kernel_size)
|
721 |
+
fan_in = in_features * receptive_field
|
722 |
+
fan_out = out_features * receptive_field
|
723 |
+
else:
|
724 |
+
fan_in = in_features
|
725 |
+
fan_out = out_features
|
726 |
+
|
727 |
+
if criterion == 'glorot':
|
728 |
+
s = 1. / np.sqrt(2*(fan_in + fan_out))
|
729 |
+
elif criterion == 'he':
|
730 |
+
s = 1. / np.sqrt(2*fan_in)
|
731 |
+
else:
|
732 |
+
raise ValueError('Invalid criterion: ' + criterion)
|
733 |
+
|
734 |
+
if kernel_size is None:
|
735 |
+
kernel_shape = (in_features, out_features)
|
736 |
+
else:
|
737 |
+
if type(kernel_size) is int:
|
738 |
+
kernel_shape = (out_features, in_features) + tuple((kernel_size,))
|
739 |
+
else:
|
740 |
+
kernel_shape = (out_features, in_features) + (*kernel_size,)
|
741 |
+
|
742 |
+
number_of_weights = np.prod(kernel_shape)
|
743 |
+
v_r = np.random.uniform(-1.0, 1.0, number_of_weights)
|
744 |
+
v_i = np.random.uniform(-1.0, 1.0, number_of_weights)
|
745 |
+
v_j = np.random.uniform(-1.0, 1.0, number_of_weights)
|
746 |
+
v_k = np.random.uniform(-1.0, 1.0, number_of_weights)
|
747 |
+
|
748 |
+
v_r = v_r.reshape(kernel_shape)
|
749 |
+
v_i = v_i.reshape(kernel_shape)
|
750 |
+
v_j = v_j.reshape(kernel_shape)
|
751 |
+
v_k = v_k.reshape(kernel_shape)
|
752 |
+
|
753 |
+
weight_r = v_r
|
754 |
+
weight_i = v_i
|
755 |
+
weight_j = v_j
|
756 |
+
weight_k = v_k
|
757 |
+
return (weight_r, weight_i, weight_j, weight_k)
|
758 |
+
|
759 |
+
|
760 |
+
def quaternion_init(in_features, out_features, rng, kernel_size=None, criterion='glorot'):
|
761 |
+
if kernel_size is not None:
|
762 |
+
receptive_field = np.prod(kernel_size)
|
763 |
+
fan_in = in_features * receptive_field
|
764 |
+
fan_out = out_features * receptive_field
|
765 |
+
else:
|
766 |
+
fan_in = in_features
|
767 |
+
fan_out = out_features
|
768 |
+
|
769 |
+
if criterion == 'glorot':
|
770 |
+
s = 1. / np.sqrt(2*(fan_in + fan_out))
|
771 |
+
elif criterion == 'he':
|
772 |
+
s = 1. / np.sqrt(2*fan_in)
|
773 |
+
else:
|
774 |
+
raise ValueError('Invalid criterion: ' + criterion)
|
775 |
+
|
776 |
+
rng = RandomState(np.random.randint(1, 1234))
|
777 |
+
|
778 |
+
# Generating randoms and purely imaginary quaternions :
|
779 |
+
if kernel_size is None:
|
780 |
+
kernel_shape = (in_features, out_features)
|
781 |
+
else:
|
782 |
+
if type(kernel_size) is int:
|
783 |
+
kernel_shape = (out_features, in_features) + tuple((kernel_size,))
|
784 |
+
else:
|
785 |
+
kernel_shape = (out_features, in_features) + (*kernel_size,)
|
786 |
+
|
787 |
+
modulus = chi.rvs(4, loc=0, scale=s, size=kernel_shape)
|
788 |
+
number_of_weights = np.prod(kernel_shape)
|
789 |
+
v_i = np.random.uniform(-1.0, 1.0, number_of_weights)
|
790 |
+
v_j = np.random.uniform(-1.0, 1.0, number_of_weights)
|
791 |
+
v_k = np.random.uniform(-1.0, 1.0, number_of_weights)
|
792 |
+
|
793 |
+
# Purely imaginary quaternions unitary
|
794 |
+
for i in range(0, number_of_weights):
|
795 |
+
norm = np.sqrt(v_i[i]**2 + v_j[i]**2 + v_k[i]**2 + 0.0001)
|
796 |
+
v_i[i] /= norm
|
797 |
+
v_j[i] /= norm
|
798 |
+
v_k[i] /= norm
|
799 |
+
v_i = v_i.reshape(kernel_shape)
|
800 |
+
v_j = v_j.reshape(kernel_shape)
|
801 |
+
v_k = v_k.reshape(kernel_shape)
|
802 |
+
|
803 |
+
phase = rng.uniform(low=-np.pi, high=np.pi, size=kernel_shape)
|
804 |
+
|
805 |
+
weight_r = modulus * np.cos(phase)
|
806 |
+
weight_i = modulus * v_i*np.sin(phase)
|
807 |
+
weight_j = modulus * v_j*np.sin(phase)
|
808 |
+
weight_k = modulus * v_k*np.sin(phase)
|
809 |
+
|
810 |
+
return (weight_r, weight_i, weight_j, weight_k)
|
811 |
+
|
812 |
+
|
813 |
+
def create_dropout_mask(dropout_p, size, rng, as_type, operation='linear'):
|
814 |
+
if operation == 'linear':
|
815 |
+
mask = rng.binomial(n=1, p=1-dropout_p, size=size)
|
816 |
+
return Variable(torch.from_numpy(mask).type(as_type))
|
817 |
+
else:
|
818 |
+
raise Exception("create_dropout_mask accepts only 'linear'. Found operation = "
|
819 |
+
+ str(operation))
|
820 |
+
|
821 |
+
|
822 |
+
def affect_init(r_weight, i_weight, j_weight, k_weight, init_func, rng, init_criterion):
|
823 |
+
if r_weight.size() != i_weight.size() or r_weight.size() != j_weight.size() or \
|
824 |
+
r_weight.size() != k_weight.size():
|
825 |
+
raise ValueError('The real and imaginary weights '
|
826 |
+
'should have the same size . Found: r:'
|
827 |
+
+ str(r_weight.size()) + ' i:'
|
828 |
+
+ str(i_weight.size()) + ' j:'
|
829 |
+
+ str(j_weight.size()) + ' k:'
|
830 |
+
+ str(k_weight.size()))
|
831 |
+
|
832 |
+
elif r_weight.dim() != 2:
|
833 |
+
raise Exception('affect_init accepts only matrices. Found dimension = '
|
834 |
+
+ str(r_weight.dim()))
|
835 |
+
kernel_size = None
|
836 |
+
r, i, j, k = init_func(r_weight.size(0), r_weight.size(
|
837 |
+
1), rng, kernel_size, init_criterion)
|
838 |
+
r, i, j, k = torch.from_numpy(r), torch.from_numpy(
|
839 |
+
i), torch.from_numpy(j), torch.from_numpy(k)
|
840 |
+
r_weight.data = r.type_as(r_weight.data)
|
841 |
+
i_weight.data = i.type_as(i_weight.data)
|
842 |
+
j_weight.data = j.type_as(j_weight.data)
|
843 |
+
k_weight.data = k.type_as(k_weight.data)
|
844 |
+
|
845 |
+
|
846 |
+
def affect_init_conv(r_weight, i_weight, j_weight, k_weight, kernel_size, init_func, rng,
|
847 |
+
init_criterion):
|
848 |
+
if r_weight.size() != i_weight.size() or r_weight.size() != j_weight.size() or \
|
849 |
+
r_weight.size() != k_weight.size():
|
850 |
+
raise ValueError('The real and imaginary weights '
|
851 |
+
'should have the same size . Found: r:'
|
852 |
+
+ str(r_weight.size()) + ' i:'
|
853 |
+
+ str(i_weight.size()) + ' j:'
|
854 |
+
+ str(j_weight.size()) + ' k:'
|
855 |
+
+ str(k_weight.size()))
|
856 |
+
|
857 |
+
elif 2 >= r_weight.dim():
|
858 |
+
raise Exception('affect_conv_init accepts only tensors that have more than 2 dimensions. Found dimension = '
|
859 |
+
+ str(real_weight.dim()))
|
860 |
+
|
861 |
+
r, i, j, k = init_func(
|
862 |
+
r_weight.size(1),
|
863 |
+
r_weight.size(0),
|
864 |
+
rng=rng,
|
865 |
+
kernel_size=kernel_size,
|
866 |
+
criterion=init_criterion
|
867 |
+
)
|
868 |
+
r, i, j, k = torch.from_numpy(r), torch.from_numpy(
|
869 |
+
i), torch.from_numpy(j), torch.from_numpy(k)
|
870 |
+
r_weight.data = r.type_as(r_weight.data)
|
871 |
+
i_weight.data = i.type_as(i_weight.data)
|
872 |
+
j_weight.data = j.type_as(j_weight.data)
|
873 |
+
k_weight.data = k.type_as(k_weight.data)
|
874 |
+
|
875 |
+
|
876 |
+
def get_kernel_and_weight_shape(operation, in_channels, out_channels, kernel_size):
|
877 |
+
if operation == 'convolution1d':
|
878 |
+
if type(kernel_size) is not int:
|
879 |
+
raise ValueError(
|
880 |
+
"""An invalid kernel_size was supplied for a 1d convolution. The kernel size
|
881 |
+
must be integer in the case. Found kernel_size = """ + str(kernel_size)
|
882 |
+
)
|
883 |
+
else:
|
884 |
+
ks = kernel_size
|
885 |
+
w_shape = (out_channels, in_channels) + tuple((ks,))
|
886 |
+
else: # in case it is 2d or 3d.
|
887 |
+
if operation == 'convolution2d' and type(kernel_size) is int:
|
888 |
+
ks = (kernel_size, kernel_size)
|
889 |
+
elif operation == 'convolution3d' and type(kernel_size) is int:
|
890 |
+
ks = (kernel_size, kernel_size, kernel_size)
|
891 |
+
elif type(kernel_size) is not int:
|
892 |
+
if operation == 'convolution2d' and len(kernel_size) != 2:
|
893 |
+
raise ValueError(
|
894 |
+
"""An invalid kernel_size was supplied for a 2d convolution. The kernel size
|
895 |
+
must be either an integer or a tuple of 2. Found kernel_size = """ + str(kernel_size)
|
896 |
+
)
|
897 |
+
elif operation == 'convolution3d' and len(kernel_size) != 3:
|
898 |
+
raise ValueError(
|
899 |
+
"""An invalid kernel_size was supplied for a 3d convolution. The kernel size
|
900 |
+
must be either an integer or a tuple of 3. Found kernel_size = """ + str(kernel_size)
|
901 |
+
)
|
902 |
+
else:
|
903 |
+
ks = kernel_size
|
904 |
+
w_shape = (out_channels, in_channels) + (*ks,)
|
905 |
+
return ks, w_shape
|
models/phc_models.py
ADDED
@@ -0,0 +1,365 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''ResNet in PyTorch.
|
2 |
+
For Pre-activation ResNet, see 'preact_resnet.py'.
|
3 |
+
Reference:
|
4 |
+
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
|
5 |
+
Deep Residual Learning for Image Recognition. arXiv:1512.03385
|
6 |
+
'''
|
7 |
+
import sys
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
|
13 |
+
from models.hypercomplex_layers import PHConv
|
14 |
+
from utils.utils import load_weights
|
15 |
+
|
16 |
+
sys.path.append('./models')
|
17 |
+
|
18 |
+
|
19 |
+
class BasicBlock(nn.Module):
|
20 |
+
expansion = 1
|
21 |
+
|
22 |
+
def __init__(self, in_planes, planes, stride=1, n=4):
|
23 |
+
super().__init__()
|
24 |
+
self.conv1 = PHConv(n,
|
25 |
+
in_planes, planes, kernel_size=3, stride=stride, padding=1)
|
26 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
27 |
+
self.conv2 = PHConv(n, planes, planes, kernel_size=3,
|
28 |
+
stride=1, padding=1)
|
29 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
30 |
+
|
31 |
+
self.shortcut = nn.Sequential()
|
32 |
+
if stride != 1 or in_planes != self.expansion*planes:
|
33 |
+
self.shortcut = nn.Sequential(
|
34 |
+
PHConv(n, in_planes, self.expansion*planes,
|
35 |
+
kernel_size=1, stride=stride,),
|
36 |
+
nn.BatchNorm2d(self.expansion*planes)
|
37 |
+
)
|
38 |
+
|
39 |
+
def forward(self, x):
|
40 |
+
out = F.relu(self.bn1(self.conv1(x)))
|
41 |
+
out = self.bn2(self.conv2(out))
|
42 |
+
out += self.shortcut(x)
|
43 |
+
out = F.relu(out)
|
44 |
+
return out
|
45 |
+
|
46 |
+
|
47 |
+
class Bottleneck(nn.Module):
|
48 |
+
expansion = 2
|
49 |
+
|
50 |
+
def __init__(self, in_planes, planes, stride=1, n=4):
|
51 |
+
super().__init__()
|
52 |
+
self.conv1 = PHConv(n, in_planes, planes, kernel_size=1, stride=1)
|
53 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
54 |
+
self.conv2 = PHConv(n, planes, planes, kernel_size=3,
|
55 |
+
stride=stride, padding=1)
|
56 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
57 |
+
self.conv3 = PHConv(n, planes, self.expansion *
|
58 |
+
planes, kernel_size=1, stride=1)
|
59 |
+
self.bn3 = nn.BatchNorm2d(self.expansion*planes)
|
60 |
+
|
61 |
+
self.shortcut = nn.Sequential()
|
62 |
+
if stride != 1 or in_planes != self.expansion*planes:
|
63 |
+
self.shortcut = nn.Sequential(
|
64 |
+
PHConv(n, in_planes, self.expansion*planes,
|
65 |
+
kernel_size=1, stride=stride),
|
66 |
+
nn.BatchNorm2d(self.expansion*planes)
|
67 |
+
)
|
68 |
+
|
69 |
+
def forward(self, x):
|
70 |
+
out = F.relu(self.bn1(self.conv1(x)))
|
71 |
+
out = F.relu(self.bn2(self.conv2(out)))
|
72 |
+
out = self.bn3(self.conv3(out))
|
73 |
+
out += self.shortcut(x)
|
74 |
+
out = F.relu(out)
|
75 |
+
return out
|
76 |
+
|
77 |
+
|
78 |
+
class PHCResNet(nn.Module):
|
79 |
+
"""PHCResNet.
|
80 |
+
|
81 |
+
Parameters:
|
82 |
+
- before_gap_output: True to return the output before refiner blocks and gap
|
83 |
+
- gap_output: True to return the output after gap and before final linear layer
|
84 |
+
"""
|
85 |
+
|
86 |
+
def __init__(self, block, num_blocks, channels=4, n=4, num_classes=10, before_gap_output=False, gap_output=False, visualize=False):
|
87 |
+
super().__init__()
|
88 |
+
self.block = block
|
89 |
+
self.num_blocks = num_blocks
|
90 |
+
self.in_planes = 64
|
91 |
+
self.n = n
|
92 |
+
self.before_gap_out = before_gap_output
|
93 |
+
self.gap_output = gap_output
|
94 |
+
self.visualize = visualize
|
95 |
+
|
96 |
+
self.conv1 = PHConv(n, channels, 64, kernel_size=3,
|
97 |
+
stride=1, padding=1)
|
98 |
+
self.bn1 = nn.BatchNorm2d(64)
|
99 |
+
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1, n=n)
|
100 |
+
self.layer2 = self._make_layer(
|
101 |
+
block, 128, num_blocks[1], stride=2, n=n)
|
102 |
+
self.layer3 = self._make_layer(
|
103 |
+
block, 256, num_blocks[2], stride=2, n=n)
|
104 |
+
self.layer4 = self._make_layer(
|
105 |
+
block, 512, num_blocks[3], stride=2, n=n)
|
106 |
+
|
107 |
+
# Refiner blocks
|
108 |
+
self.layer5 = None
|
109 |
+
self.layer6 = None
|
110 |
+
|
111 |
+
if not before_gap_output and not gap_output:
|
112 |
+
self.linear = nn.Linear(512*block.expansion, num_classes)
|
113 |
+
|
114 |
+
def add_top_blocks(self, num_classes=1):
|
115 |
+
# print("Adding top blocks with n = ", self.n)
|
116 |
+
self.layer5 = self._make_layer(Bottleneck, 512, 2, stride=2, n=self.n)
|
117 |
+
self.layer6 = self._make_layer(Bottleneck, 512, 2, stride=2, n=self.n)
|
118 |
+
|
119 |
+
if not self.before_gap_out and not self.gap_output:
|
120 |
+
self.linear = nn.Linear(1024, num_classes)
|
121 |
+
|
122 |
+
def _make_layer(self, block, planes, num_blocks, stride, n):
|
123 |
+
strides = [stride] + [1]*(num_blocks-1)
|
124 |
+
layers = []
|
125 |
+
for stride in strides:
|
126 |
+
layers.append(block(self.in_planes, planes, stride, n))
|
127 |
+
self.in_planes = planes * block.expansion
|
128 |
+
return nn.Sequential(*layers)
|
129 |
+
|
130 |
+
def forward(self, x):
|
131 |
+
out = F.relu(self.bn1(self.conv1(x)))
|
132 |
+
out = self.layer1(out)
|
133 |
+
out = self.layer2(out)
|
134 |
+
out = self.layer3(out)
|
135 |
+
out4 = self.layer4(out)
|
136 |
+
|
137 |
+
if self.before_gap_out:
|
138 |
+
return out4
|
139 |
+
|
140 |
+
if self.layer5:
|
141 |
+
out5 = self.layer5(out4)
|
142 |
+
out6 = self.layer6(out5)
|
143 |
+
|
144 |
+
# global average pooling (GAP)
|
145 |
+
n, c, _, _ = out6.size()
|
146 |
+
out = out6.view(n, c, -1).mean(-1)
|
147 |
+
|
148 |
+
if self.gap_output:
|
149 |
+
return out
|
150 |
+
|
151 |
+
out = self.linear(out)
|
152 |
+
|
153 |
+
if self.visualize:
|
154 |
+
# return the final output and activation maps at two different levels
|
155 |
+
return out, out4, out6
|
156 |
+
return out
|
157 |
+
|
158 |
+
|
159 |
+
class Encoder(nn.Module):
|
160 |
+
"""Encoder branch in PHYSBOnet."""
|
161 |
+
|
162 |
+
def __init__(self, channels, n):
|
163 |
+
super().__init__()
|
164 |
+
self.in_planes = 64
|
165 |
+
|
166 |
+
self.conv1 = PHConv(n, channels, 64, kernel_size=3,
|
167 |
+
stride=1, padding=1)
|
168 |
+
self.bn1 = nn.BatchNorm2d(64)
|
169 |
+
self.layer1 = self._make_layer(BasicBlock, 64, 2, stride=1, n=n)
|
170 |
+
self.layer2 = self._make_layer(BasicBlock, 128, 2, stride=2, n=n)
|
171 |
+
|
172 |
+
def _make_layer(self, block, planes, num_blocks, stride, n):
|
173 |
+
strides = [stride] + [1]*(num_blocks-1)
|
174 |
+
layers = []
|
175 |
+
for stride in strides:
|
176 |
+
layers.append(block(self.in_planes, planes, stride, n))
|
177 |
+
self.in_planes = planes * block.expansion
|
178 |
+
return nn.Sequential(*layers)
|
179 |
+
|
180 |
+
def forward(self, x):
|
181 |
+
out = F.relu(self.bn1(self.conv1(x)))
|
182 |
+
out = self.layer1(out)
|
183 |
+
out = self.layer2(out)
|
184 |
+
return out
|
185 |
+
|
186 |
+
|
187 |
+
class SharedBottleneck(nn.Module):
|
188 |
+
"""SharedBottleneck in PHYSBOnet."""
|
189 |
+
|
190 |
+
def __init__(self, n, in_planes):
|
191 |
+
super().__init__()
|
192 |
+
self.in_planes = in_planes
|
193 |
+
|
194 |
+
self.layer3 = self._make_layer(BasicBlock, 256, 2, stride=2, n=n)
|
195 |
+
self.layer4 = self._make_layer(BasicBlock, 512, 2, stride=2, n=n)
|
196 |
+
self.layer5 = self._make_layer(Bottleneck, 512, 2, stride=2, n=n)
|
197 |
+
self.layer6 = self._make_layer(Bottleneck, 512, 2, stride=2, n=n)
|
198 |
+
|
199 |
+
def _make_layer(self, block, planes, num_blocks, stride, n):
|
200 |
+
strides = [stride] + [1]*(num_blocks-1)
|
201 |
+
layers = []
|
202 |
+
for stride in strides:
|
203 |
+
layers.append(block(self.in_planes, planes, stride, n))
|
204 |
+
self.in_planes = planes * block.expansion
|
205 |
+
return nn.Sequential(*layers)
|
206 |
+
|
207 |
+
def forward(self, x):
|
208 |
+
out = self.layer3(x)
|
209 |
+
out = self.layer4(out)
|
210 |
+
out = self.layer5(out)
|
211 |
+
out = self.layer6(out)
|
212 |
+
n, c, _, _ = out.size()
|
213 |
+
out = out.view(n, c, -1).mean(-1)
|
214 |
+
return out
|
215 |
+
|
216 |
+
|
217 |
+
class Classifier(nn.Module):
|
218 |
+
"""Classifier branch in PHYSEnet."""
|
219 |
+
|
220 |
+
def __init__(self, n, num_classes, in_planes=512, visualize=False):
|
221 |
+
super().__init__()
|
222 |
+
self.in_planes = in_planes
|
223 |
+
self.visualize = visualize
|
224 |
+
|
225 |
+
# Refiner blocks
|
226 |
+
self.layer5 = self._make_layer(Bottleneck, 512, 2, stride=2, n=n)
|
227 |
+
self.layer6 = self._make_layer(Bottleneck, 512, 2, stride=2, n=n)
|
228 |
+
self.linear = nn.Linear(1024, num_classes)
|
229 |
+
|
230 |
+
def _make_layer(self, block, planes, num_blocks, stride, n):
|
231 |
+
strides = [stride] + [1]*(num_blocks-1)
|
232 |
+
layers = []
|
233 |
+
for stride in strides:
|
234 |
+
layers.append(block(self.in_planes, planes, stride, n))
|
235 |
+
self.in_planes = planes * block.expansion
|
236 |
+
return nn.Sequential(*layers)
|
237 |
+
|
238 |
+
def forward(self, x):
|
239 |
+
out = self.layer5(x)
|
240 |
+
feature_maps = self.layer6(out)
|
241 |
+
|
242 |
+
n, c, _, _ = feature_maps.size()
|
243 |
+
out = feature_maps.view(n, c, -1).mean(-1)
|
244 |
+
out = self.linear(out)
|
245 |
+
|
246 |
+
if self.visualize:
|
247 |
+
return out, feature_maps
|
248 |
+
|
249 |
+
return out
|
250 |
+
|
251 |
+
|
252 |
+
class PHYSBOnet(nn.Module):
|
253 |
+
"""PHYSBOnet.
|
254 |
+
|
255 |
+
Parameters:
|
256 |
+
- shared: True to share the Bottleneck between the two sides, False for the 'concat' version.
|
257 |
+
- weights: path to pretrained weights of patch classifier for Encoder branches
|
258 |
+
"""
|
259 |
+
|
260 |
+
def __init__(self, n, shared=True, num_classes=1, weights=None):
|
261 |
+
super().__init__()
|
262 |
+
|
263 |
+
self.shared = shared
|
264 |
+
|
265 |
+
self.encoder_sx = Encoder(channels=2, n=2)
|
266 |
+
self.encoder_dx = Encoder(channels=2, n=2)
|
267 |
+
|
268 |
+
self.shared_resnet = SharedBottleneck(
|
269 |
+
n, in_planes=128 if shared else 256)
|
270 |
+
|
271 |
+
if weights:
|
272 |
+
load_weights(self.encoder_sx, weights)
|
273 |
+
load_weights(self.encoder_dx, weights)
|
274 |
+
|
275 |
+
self.classifier_sx = nn.Linear(1024, num_classes)
|
276 |
+
self.classifier_dx = nn.Linear(1024, num_classes)
|
277 |
+
|
278 |
+
def forward(self, x):
|
279 |
+
x_sx, x_dx = x
|
280 |
+
|
281 |
+
# Apply Encoder
|
282 |
+
out_sx = self.encoder_sx(x_sx)
|
283 |
+
out_dx = self.encoder_dx(x_dx)
|
284 |
+
|
285 |
+
# Shared layers
|
286 |
+
if self.shared:
|
287 |
+
out_sx = self.shared_resnet(out_sx)
|
288 |
+
out_dx = self.shared_resnet(out_dx)
|
289 |
+
|
290 |
+
out_sx = self.classifier_sx(out_sx)
|
291 |
+
out_dx = self.classifier_dx(out_dx)
|
292 |
+
|
293 |
+
else: # Concat version
|
294 |
+
out = torch.cat([out_sx, out_dx], dim=1)
|
295 |
+
out = self.shared_resnet(out)
|
296 |
+
out_sx = self.classifier_sx(out)
|
297 |
+
out_dx = self.classifier_dx(out)
|
298 |
+
|
299 |
+
out = torch.cat([out_sx, out_dx], dim=0)
|
300 |
+
return out
|
301 |
+
|
302 |
+
|
303 |
+
class PHYSEnet(nn.Module):
|
304 |
+
"""PHYSEnet.
|
305 |
+
|
306 |
+
Parameters:
|
307 |
+
- weights: path to pretrained weights of patch classifier for PHCResNet18 encoder or path to whole-image classifier
|
308 |
+
- patch_weights: True if the weights correspond to patch classifier, False if they are whole-image.
|
309 |
+
In the latter case also Classifier branches will be initialized.
|
310 |
+
"""
|
311 |
+
|
312 |
+
def __init__(self, n=2, num_classes=1, weights=None, patch_weights=True, visualize=False):
|
313 |
+
super().__init__()
|
314 |
+
self.visualize = visualize
|
315 |
+
self.phcresnet18 = PHCResNet18(
|
316 |
+
n=2, num_classes=num_classes, channels=2, before_gap_output=True)
|
317 |
+
|
318 |
+
if weights:
|
319 |
+
print('Loading weights for phcresnet18 from ', weights)
|
320 |
+
load_weights(self.phcresnet18, weights)
|
321 |
+
|
322 |
+
self.classifier_sx = Classifier(n, num_classes, visualize=visualize)
|
323 |
+
self.classifier_dx = Classifier(n, num_classes, visualize=visualize)
|
324 |
+
|
325 |
+
if not patch_weights and weights:
|
326 |
+
print('Loading weights for classifiers from ', weights)
|
327 |
+
load_weights(self.classifier_sx, weights)
|
328 |
+
load_weights(self.classifier_dx, weights)
|
329 |
+
|
330 |
+
def forward(self, x):
|
331 |
+
x_sx, x_dx = x
|
332 |
+
|
333 |
+
# Apply Encoder
|
334 |
+
out_enc_sx = self.phcresnet18(x_sx)
|
335 |
+
out_enc_dx = self.phcresnet18(x_dx)
|
336 |
+
|
337 |
+
if self.visualize:
|
338 |
+
out_sx, act_sx = self.classifier_sx(out_enc_sx)
|
339 |
+
out_dx, act_dx = self.classifier_dx(out_enc_dx)
|
340 |
+
else:
|
341 |
+
# Apply refiner blocks + classifier
|
342 |
+
out_sx = self.classifier_sx(out_enc_sx)
|
343 |
+
out_dx = self.classifier_dx(out_enc_dx)
|
344 |
+
|
345 |
+
out = torch.cat([out_sx, out_dx], dim=0)
|
346 |
+
|
347 |
+
if self.visualize:
|
348 |
+
return out, out_enc_sx, out_enc_dx, act_sx, act_dx
|
349 |
+
|
350 |
+
return out
|
351 |
+
|
352 |
+
|
353 |
+
def PHCResNet18(channels=4, n=4, num_classes=10, before_gap_output=False, gap_output=False, visualize=False):
|
354 |
+
return PHCResNet(BasicBlock,
|
355 |
+
[2, 2, 2, 2],
|
356 |
+
channels=channels,
|
357 |
+
n=n,
|
358 |
+
num_classes=num_classes,
|
359 |
+
before_gap_output=before_gap_output,
|
360 |
+
gap_output=gap_output,
|
361 |
+
visualize=visualize)
|
362 |
+
|
363 |
+
|
364 |
+
def PHCResNet50(channels=4, n=4, num_classes=10):
|
365 |
+
return PHCResNet(Bottleneck, [3, 4, 6, 3], channels=channels, n=n, num_classes=num_classes)
|
models/real_models.py
ADDED
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''ResNet in PyTorch.
|
2 |
+
For Pre-activation ResNet, see 'preact_resnet.py'.
|
3 |
+
Reference:
|
4 |
+
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
|
5 |
+
Deep Residual Learning for Image Recognition. arXiv:1512.03385
|
6 |
+
'''
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
from utils.utils import load_weights
|
12 |
+
|
13 |
+
|
14 |
+
class BasicBlock(nn.Module):
|
15 |
+
expansion = 1
|
16 |
+
|
17 |
+
def __init__(self, in_planes, planes, stride=1):
|
18 |
+
super().__init__()
|
19 |
+
self.conv1 = nn.Conv2d(
|
20 |
+
in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
21 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
22 |
+
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
|
23 |
+
stride=1, padding=1, bias=False)
|
24 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
25 |
+
|
26 |
+
self.shortcut = nn.Sequential()
|
27 |
+
if stride != 1 or in_planes != self.expansion*planes:
|
28 |
+
self.shortcut = nn.Sequential(
|
29 |
+
nn.Conv2d(in_planes, self.expansion*planes,
|
30 |
+
kernel_size=1, stride=stride, bias=False),
|
31 |
+
nn.BatchNorm2d(self.expansion*planes)
|
32 |
+
)
|
33 |
+
|
34 |
+
def forward(self, x):
|
35 |
+
out = F.relu(self.bn1(self.conv1(x)))
|
36 |
+
out = self.bn2(self.conv2(out))
|
37 |
+
out += self.shortcut(x)
|
38 |
+
out = F.relu(out)
|
39 |
+
return out
|
40 |
+
|
41 |
+
|
42 |
+
class Bottleneck(nn.Module):
|
43 |
+
expansion = 2
|
44 |
+
|
45 |
+
def __init__(self, in_planes, planes, stride=1):
|
46 |
+
super().__init__()
|
47 |
+
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
|
48 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
49 |
+
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
|
50 |
+
stride=stride, padding=1, bias=False)
|
51 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
52 |
+
self.conv3 = nn.Conv2d(planes, self.expansion *
|
53 |
+
planes, kernel_size=1, bias=False)
|
54 |
+
self.bn3 = nn.BatchNorm2d(self.expansion*planes)
|
55 |
+
|
56 |
+
self.shortcut = nn.Sequential()
|
57 |
+
if stride != 1 or in_planes != self.expansion*planes:
|
58 |
+
self.shortcut = nn.Sequential(
|
59 |
+
nn.Conv2d(in_planes, self.expansion*planes,
|
60 |
+
kernel_size=1, stride=stride, bias=False),
|
61 |
+
nn.BatchNorm2d(self.expansion*planes)
|
62 |
+
)
|
63 |
+
|
64 |
+
def forward(self, x):
|
65 |
+
out = F.relu(self.bn1(self.conv1(x)))
|
66 |
+
out = F.relu(self.bn2(self.conv2(out)))
|
67 |
+
out = self.bn3(self.conv3(out))
|
68 |
+
out += self.shortcut(x)
|
69 |
+
out = F.relu(out)
|
70 |
+
return out
|
71 |
+
|
72 |
+
|
73 |
+
class ResNet(nn.Module):
|
74 |
+
def __init__(self, block, num_blocks, channels=4, num_classes=10, gap_output=False, before_gap_output=False, visualize=False):
|
75 |
+
super().__init__()
|
76 |
+
self.block = block
|
77 |
+
self.num_blocks = num_blocks
|
78 |
+
self.in_planes = 64
|
79 |
+
self.gap_output = gap_output
|
80 |
+
self.before_gap_out = before_gap_output
|
81 |
+
self.visualize = visualize
|
82 |
+
|
83 |
+
self.conv1 = nn.Conv2d(channels, 64, kernel_size=3,
|
84 |
+
stride=1, padding=1, bias=False)
|
85 |
+
self.bn1 = nn.BatchNorm2d(64)
|
86 |
+
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
|
87 |
+
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
|
88 |
+
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
|
89 |
+
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
|
90 |
+
self.layer5 = None
|
91 |
+
self.layer6 = None
|
92 |
+
if not gap_output and not before_gap_output:
|
93 |
+
self.linear = nn.Linear(512*block.expansion, num_classes)
|
94 |
+
|
95 |
+
def add_top_blocks(self, num_classes=1):
|
96 |
+
self.layer5 = self._make_layer(Bottleneck, 512, 2, stride=2)
|
97 |
+
self.layer6 = self._make_layer(Bottleneck, 512, 2, stride=2)
|
98 |
+
|
99 |
+
if not self.gap_output and not self.before_gap_out:
|
100 |
+
self.linear = nn.Linear(1024, num_classes)
|
101 |
+
|
102 |
+
def _make_layer(self, block, planes, num_blocks, stride):
|
103 |
+
strides = [stride] + [1]*(num_blocks-1)
|
104 |
+
layers = []
|
105 |
+
for stride in strides:
|
106 |
+
layers.append(block(self.in_planes, planes, stride))
|
107 |
+
self.in_planes = planes * block.expansion
|
108 |
+
return nn.Sequential(*layers)
|
109 |
+
|
110 |
+
def forward(self, x):
|
111 |
+
out = F.relu(self.bn1(self.conv1(x)))
|
112 |
+
out = self.layer1(out)
|
113 |
+
out = self.layer2(out)
|
114 |
+
out = self.layer3(out)
|
115 |
+
out4 = self.layer4(out)
|
116 |
+
|
117 |
+
if self.before_gap_out:
|
118 |
+
return out4
|
119 |
+
|
120 |
+
if self.layer5:
|
121 |
+
out5 = self.layer5(out4)
|
122 |
+
out6 = self.layer6(out5)
|
123 |
+
|
124 |
+
n, c, _, _ = out6.size()
|
125 |
+
out = out6.view(n, c, -1).mean(-1)
|
126 |
+
|
127 |
+
if self.gap_output:
|
128 |
+
return out
|
129 |
+
|
130 |
+
out = self.linear(out)
|
131 |
+
if self.visualize:
|
132 |
+
return out, out4, out6
|
133 |
+
return out
|
134 |
+
|
135 |
+
|
136 |
+
class Encoder(nn.Module):
|
137 |
+
def __init__(self, channels):
|
138 |
+
super().__init__()
|
139 |
+
self.in_planes = 64
|
140 |
+
|
141 |
+
self.conv1 = nn.Conv2d(channels, 64, kernel_size=3,
|
142 |
+
stride=1, padding=1, bias=False)
|
143 |
+
self.bn1 = nn.BatchNorm2d(64)
|
144 |
+
self.layer1 = self._make_layer(BasicBlock, 64, 2, stride=1)
|
145 |
+
self.layer2 = self._make_layer(BasicBlock, 128, 2, stride=2)
|
146 |
+
|
147 |
+
def _make_layer(self, block, planes, num_blocks, stride):
|
148 |
+
strides = [stride] + [1]*(num_blocks-1)
|
149 |
+
layers = []
|
150 |
+
for stride in strides:
|
151 |
+
layers.append(block(self.in_planes, planes, stride))
|
152 |
+
self.in_planes = planes * block.expansion
|
153 |
+
return nn.Sequential(*layers)
|
154 |
+
|
155 |
+
def forward(self, x):
|
156 |
+
out = F.relu(self.bn1(self.conv1(x)))
|
157 |
+
out = self.layer1(out)
|
158 |
+
out = self.layer2(out)
|
159 |
+
return out
|
160 |
+
|
161 |
+
|
162 |
+
class SharedBottleneck(nn.Module):
|
163 |
+
def __init__(self, in_planes):
|
164 |
+
super().__init__()
|
165 |
+
self.in_planes = in_planes
|
166 |
+
|
167 |
+
self.layer3 = self._make_layer(BasicBlock, 256, 2, stride=2)
|
168 |
+
self.layer4 = self._make_layer(BasicBlock, 512, 2, stride=2)
|
169 |
+
self.layer5 = self._make_layer(Bottleneck, 512, 2, stride=2)
|
170 |
+
self.layer6 = self._make_layer(Bottleneck, 512, 2, stride=2)
|
171 |
+
|
172 |
+
def _make_layer(self, block, planes, num_blocks, stride):
|
173 |
+
strides = [stride] + [1]*(num_blocks-1)
|
174 |
+
layers = []
|
175 |
+
for stride in strides:
|
176 |
+
layers.append(block(self.in_planes, planes, stride))
|
177 |
+
self.in_planes = planes * block.expansion
|
178 |
+
return nn.Sequential(*layers)
|
179 |
+
|
180 |
+
def forward(self, x):
|
181 |
+
out = self.layer3(x)
|
182 |
+
out = self.layer4(out)
|
183 |
+
out = self.layer5(out)
|
184 |
+
out = self.layer6(out)
|
185 |
+
n, c, _, _ = out.size()
|
186 |
+
out = out.view(n, c, -1).mean(-1)
|
187 |
+
return out
|
188 |
+
|
189 |
+
|
190 |
+
class Classifier(nn.Module):
|
191 |
+
def __init__(self, num_classes, in_planes=512, visualize=False):
|
192 |
+
super().__init__()
|
193 |
+
self.in_planes = in_planes
|
194 |
+
self.visualize = visualize
|
195 |
+
|
196 |
+
self.layer5 = self._make_layer(Bottleneck, 512, 2, stride=2)
|
197 |
+
self.layer6 = self._make_layer(Bottleneck, 512, 2, stride=2)
|
198 |
+
self.linear = nn.Linear(1024, num_classes)
|
199 |
+
|
200 |
+
def _make_layer(self, block, planes, num_blocks, stride):
|
201 |
+
strides = [stride] + [1]*(num_blocks-1)
|
202 |
+
layers = []
|
203 |
+
for stride in strides:
|
204 |
+
layers.append(block(self.in_planes, planes, stride))
|
205 |
+
self.in_planes = planes * block.expansion
|
206 |
+
return nn.Sequential(*layers)
|
207 |
+
|
208 |
+
def forward(self, x):
|
209 |
+
out = self.layer5(x)
|
210 |
+
feature_maps = self.layer6(out)
|
211 |
+
|
212 |
+
n, c, _, _ = feature_maps.size()
|
213 |
+
out = feature_maps.view(n, c, -1).mean(-1)
|
214 |
+
out = self.linear(out)
|
215 |
+
|
216 |
+
if self.visualize:
|
217 |
+
return out, feature_maps
|
218 |
+
|
219 |
+
return out
|
220 |
+
|
221 |
+
|
222 |
+
class SBOnet(nn.Module):
|
223 |
+
"""SBOnet.
|
224 |
+
|
225 |
+
Parameters:
|
226 |
+
- shared: True to share the Bottleneck between the two sides, False for the 'concat' version.
|
227 |
+
- weights: path to pretrained weights of patch classifier for Encoder branches
|
228 |
+
"""
|
229 |
+
|
230 |
+
def __init__(self, shared=True, num_classes=1, weights=None):
|
231 |
+
super().__init__()
|
232 |
+
|
233 |
+
self.shared = shared
|
234 |
+
|
235 |
+
self.encoder_sx = Encoder(channels=2)
|
236 |
+
self.encoder_dx = Encoder(channels=2)
|
237 |
+
|
238 |
+
self.shared_resnet = SharedBottleneck(in_planes=128 if shared else 256)
|
239 |
+
|
240 |
+
if weights:
|
241 |
+
load_weights(self.encoder_sx, weights)
|
242 |
+
load_weights(self.encoder_dx, weights)
|
243 |
+
|
244 |
+
self.classifier_sx = nn.Linear(1024, num_classes)
|
245 |
+
self.classifier_dx = nn.Linear(1024, num_classes)
|
246 |
+
|
247 |
+
def forward(self, x):
|
248 |
+
x_sx, x_dx = x
|
249 |
+
|
250 |
+
# Apply Encoder
|
251 |
+
out_sx = self.encoder_sx(x_sx)
|
252 |
+
out_dx = self.encoder_dx(x_dx)
|
253 |
+
|
254 |
+
# Shared layers
|
255 |
+
if self.shared:
|
256 |
+
out_sx = self.shared_resnet(out_sx)
|
257 |
+
out_dx = self.shared_resnet(out_dx)
|
258 |
+
|
259 |
+
out_sx = self.classifier_sx(out_sx)
|
260 |
+
out_dx = self.classifier_dx(out_dx)
|
261 |
+
|
262 |
+
else: # Concat version
|
263 |
+
out = torch.cat([out_sx, out_dx], dim=1)
|
264 |
+
out = self.shared_resnet(out)
|
265 |
+
out_sx = self.classifier_sx(out)
|
266 |
+
out_dx = self.classifier_dx(out)
|
267 |
+
|
268 |
+
out = torch.cat([out_sx, out_dx], dim=0)
|
269 |
+
return out
|
270 |
+
|
271 |
+
|
272 |
+
class SEnet(nn.Module):
|
273 |
+
"""SEnet.
|
274 |
+
|
275 |
+
Parameters:
|
276 |
+
- weights: path to pretrained weights of patch classifier for PHCResNet18 encoder or path to whole-image classifier
|
277 |
+
- patch_weights: True if the weights correspond to patch classifier, False if they are whole-image.
|
278 |
+
In the latter case also Classifier branches will be initialized.
|
279 |
+
"""
|
280 |
+
|
281 |
+
def __init__(self, num_classes=1, weights=None, patch_weights=True, visualize=False):
|
282 |
+
super().__init__()
|
283 |
+
self.visualize = visualize
|
284 |
+
self.resnet18 = ResNet18(
|
285 |
+
num_classes=num_classes, channels=2, before_gap_output=True)
|
286 |
+
|
287 |
+
if weights:
|
288 |
+
print('Loading weights for resnet18 from ', weights)
|
289 |
+
load_weights(self.resnet18, weights)
|
290 |
+
|
291 |
+
self.classifier_sx = Classifier(num_classes, visualize=visualize)
|
292 |
+
self.classifier_dx = Classifier(num_classes, visualize=visualize)
|
293 |
+
|
294 |
+
if not patch_weights and weights:
|
295 |
+
print('Loading weights for classifiers from ', weights)
|
296 |
+
load_weights(self.classifier_sx, weights)
|
297 |
+
load_weights(self.classifier_dx, weights)
|
298 |
+
|
299 |
+
def forward(self, x):
|
300 |
+
x_sx, x_dx = x
|
301 |
+
|
302 |
+
# Apply Encoder
|
303 |
+
out_enc_sx = self.resnet18(x_sx)
|
304 |
+
out_enc_dx = self.resnet18(x_dx)
|
305 |
+
|
306 |
+
if self.visualize:
|
307 |
+
out_sx, act_sx = self.classifier_sx(out_enc_sx)
|
308 |
+
out_dx, act_dx = self.classifier_dx(out_enc_dx)
|
309 |
+
else:
|
310 |
+
# Apply refiner blocks + classifier
|
311 |
+
out_sx = self.classifier_sx(out_enc_sx)
|
312 |
+
out_dx = self.classifier_dx(out_enc_dx)
|
313 |
+
|
314 |
+
out = torch.cat([out_sx, out_dx], dim=0)
|
315 |
+
|
316 |
+
if self.visualize:
|
317 |
+
return out, out_enc_sx, out_enc_dx, act_sx, act_dx
|
318 |
+
|
319 |
+
return out
|
320 |
+
|
321 |
+
|
322 |
+
def ResNet18(num_classes=10, channels=4, gap_output=False, before_gap_output=False, visualize=False):
|
323 |
+
return ResNet(BasicBlock,
|
324 |
+
[2, 2, 2, 2],
|
325 |
+
num_classes=num_classes,
|
326 |
+
channels=channels,
|
327 |
+
gap_output=gap_output,
|
328 |
+
before_gap_output=before_gap_output,
|
329 |
+
visualize=visualize)
|
330 |
+
|
331 |
+
|
332 |
+
def ResNet50(num_classes=10, channels=4):
|
333 |
+
return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, channels=channels)
|
utils/__init__.py
ADDED
File without changes
|
utils/utils.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def mean_activations(tensor):
|
5 |
+
"""Computes mean of activation maps tensor."""
|
6 |
+
# squeeze to remove batch dimension
|
7 |
+
return torch.mean(tensor.detach().cpu(), dim=1).squeeze(dim=0)
|
8 |
+
|
9 |
+
|
10 |
+
def load_weights(model, weights):
|
11 |
+
"""Loads the weights of only the layers present in the given model."""
|
12 |
+
pretrained_dict = torch.load(weights, map_location='cpu')
|
13 |
+
model_dict = model.state_dict()
|
14 |
+
pretrained_dict = {k: v for k,
|
15 |
+
v in pretrained_dict.items() if k in model_dict}
|
16 |
+
model_dict.update(pretrained_dict)
|
17 |
+
model.load_state_dict(model_dict)
|