File size: 34,491 Bytes
293c610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d0065b
 
 
 
 
 
 
 
 
 
 
 
b92c9d2
3d0065b
 
 
 
 
293c610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1f4671
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f7d36e
d1f4671
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f7d36e
d1f4671
 
 
 
 
 
 
 
 
 
 
 
 
 
293c610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
from shiny import render
from shiny.express import input, output, ui
from datasets import load_dataset
import pandas as pd
from pathlib import Path
import matplotlib
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt
import matplotlib.style as mplstyle
from scipy.interpolate import interp1d
from typing import Dict, Optional
from collections import namedtuple


# Mapping of nucleotides to float coordinates
mapping_easy = {
    'A': np.array([0.5, -0.8660254037844386]),
    'T': np.array([0.5, 0.8660254037844386]),
    'G': np.array([0.8660254037844386, -0.5]),
    'C': np.array([0.8660254037844386, 0.5]),
    'N': np.array([0, 0])
}

# coordinates for x+iy
Coord = namedtuple("Coord", ["x","y"])

# coordinates for a CGR encoding
CGRCoords = namedtuple("CGRCoords", ["N","x","y"])

# coordinates for each nucleotide in the 2d-plane
DEFAULT_COORDS = dict(A=Coord(1,1),C=Coord(-1,1),G=Coord(-1,-1),T=Coord(1,-1))

# Function to convert a DNA sequence to a list of coordinates
def _dna_to_coordinates(dna_sequence, mapping):
    dna_sequence = dna_sequence.upper()
    coordinates = np.array([mapping.get(nucleotide, mapping['N']) for nucleotide in dna_sequence])
    return coordinates

# Function to create the cumulative sum of a list of coordinates
def _get_cumulative_coords(mapped_coords):
    cumulative_coords = np.cumsum(mapped_coords, axis=0)
    return cumulative_coords

# Function to take a list of DNA sequences and plot them in a single figure
def plot_2d_sequences(dna_sequences, mapping=mapping_easy, single_sequence=False):
    fig, ax = plt.subplots()
    if single_sequence:
        dna_sequences = [dna_sequences]
    for dna_sequence in dna_sequences:
        mapped_coords = _dna_to_coordinates(dna_sequence, mapping)
        cumulative_coords = _get_cumulative_coords(mapped_coords)
        ax.plot(*cumulative_coords.T)
    return fig

# Function to plot a comparison of DNA sequences
def plot_2d_comparison(dna_sequences_grouped, labels, mapping=mapping_easy):
    fig, ax = plt.subplots()
    colors = plt.cm.rainbow(np.linspace(0, 1, len(dna_sequences_grouped)))
    for count, (dna_sequences, color) in enumerate(zip(dna_sequences_grouped, colors)):
        for dna_sequence in dna_sequences:
            mapped_coords = _dna_to_coordinates(dna_sequence, mapping)
            cumulative_coords = _get_cumulative_coords(mapped_coords)
            ax.plot(*cumulative_coords.T, color=color, label=labels[count])
    # Only show unique labels in the legend
    handles, labels = ax.get_legend_handles_labels()
    by_label = dict(zip(labels, handles))
    ax.legend(by_label.values(), by_label.keys())
    return fig

# Function to plot a comparison of DNA sequences
def plot_distrobutions(dna_sequences_grouped, labels, basepair, mapping=mapping_easy):
    fig, ax = plt.subplots()
    colors = plt.cm.rainbow(np.linspace(0, 1, len(dna_sequences_grouped)))
    for count, (dna_sequences, color) in enumerate(zip(dna_sequences_grouped, colors)):
        virus_y = []
        for dna_sequence in dna_sequences:
            mapped_coords = _dna_to_coordinates(dna_sequence, mapping)
            cumulative_coords = _get_cumulative_coords(mapped_coords)
            y = cumulative_coords[:, 1][basepair]
            virus_y.append(y)
        count_bins, bins = np.histogram(virus_y)
        ax.stairs(count_bins, bins , color= color, label=labels[count])
    # Only show unique labels in the legend
    handles, labels = ax.get_legend_handles_labels()
    by_label = dict(zip(labels, handles))
    ax.legend(by_label.values(), by_label.keys())
    return fig

############################################################# Virus Dataset ########################################################
#ds = load_dataset('Hack90/virus_tiny')
df = pd.read_parquet('virus_ds.parquet')
virus = df['Organism_Name'].unique()
virus = {v: v for v in virus}

############################################################# Filter and Select ########################################################
def filter_and_select(group):
    if len(group) >= 3:
        return group.head(3)
    
############################################################# Wens Method ########################################################
import numpy as np

WEIGHTS = {'0100': 1/6, '0101': 2/6, '1100' : 3/6, '0110':3/6, '1101': 4/6, '1110': 5/6,'0111':5/6, '1111': 6/6}
LOWEST_LENGTH = 5000

def _get_subsequences(sequence):
    return {nuc: [i+1 for i, x in enumerate(sequence) if x == nuc] for nuc in 'ACTG'}

def _calculate_coordinates_fixed(subsequence, L=LOWEST_LENGTH):
    return [((2 * np.pi / (L - 1)) * (K-1), np.sqrt((2 * np.pi / (L - 1)) * (K-1))) for K in subsequence]

def _calculate_weighting_full(sequence, WEIGHTS, L=LOWEST_LENGTH, E=0.0375):
    weightings = [0]
    for i in range(1, len(sequence) - 1):
        if i < len(sequence) - 2:
            subsequence = sequence[i-1:i+3]
            comparison_pattern = f"{'1' if subsequence[0] == subsequence[1] else '0'}1{'1' if subsequence[2] == subsequence[1] else '0'}{'1' if subsequence[3] == subsequence[1] else '0'}"
            weight = WEIGHTS.get(comparison_pattern, 0)
            weight = weight * E if i > L else weight
        else:
            weight = 0
        weightings.append(weight)
    weightings.append(0)
    return weightings

def _centre_of_mass(polar_coordinates, weightings):
    x, y = _calculate_standard_coordinates(polar_coordinates)
    return sum(weightings[i] * ((x[i] - (x[i]*weightings[i]))**2 + (y[i] - y[i]*weightings[i])**2) for i in range(len(x)))

def _normalised_moment_of_inertia(polar_coordinates, weightings):
    moment = _centre_of_mass(polar_coordinates, weightings)
    return np.sqrt(moment / sum(weightings))

def _calculate_standard_coordinates(polar_coordinates):
    return [rho * np.cos(theta) for theta, rho in polar_coordinates], [rho * np.sin(theta) for theta, rho in polar_coordinates]


def _moments_of_inertia(polar_coordinates, weightings):
    return [_normalised_moment_of_inertia(indices, weightings) for subsequence, indices in polar_coordinates.items()]

def moment_of_inertia(sequence, WEIGHTS, L=5000, E=0.0375):
    subsequences = _get_subsequences(sequence)
    polar_coordinates = {subsequence: _calculate_coordinates_fixed(indices, len(sequence)) for subsequence, indices in subsequences.items()}
    weightings = _calculate_weighting_full(sequence, WEIGHTS, L=L, E=E)
    return _moments_of_inertia(polar_coordinates, weightings)


def similarity_wen(sequence1, sequence2, WEIGHTS, L=5000, E=0.0375):
    L = min(len(sequence1), len(sequence2))
    inertia1 = moment_of_inertia(sequence1, WEIGHTS, L=L, E=E)
    inertia2 = moment_of_inertia(sequence2, WEIGHTS, L=L, E=E)
    similarity = np.sqrt(sum((x - y)**2 for x, y in zip(inertia1, inertia2)))
    return similarity
def heatmap(data, row_labels, col_labels, ax=None,
            cbar_kw=None, cbarlabel="", **kwargs):
    """
    Create a heatmap from a numpy array and two lists of labels.
    Parameters
    ----------
    data
        A 2D numpy array of shape (M, N).
    row_labels
        A list or array of length M with the labels for the rows.
    col_labels
        A list or array of length N with the labels for the columns.
    ax
        A `matplotlib.axes.Axes` instance to which the heatmap is plotted.  If
        not provided, use current axes or create a new one.  Optional.
    cbar_kw
        A dictionary with arguments to `matplotlib.Figure.colorbar`.  Optional.
    cbarlabel
        The label for the colorbar.  Optional.
    **kwargs
        All other arguments are forwarded to `imshow`.
    """

    if ax is None:
        ax = plt.gca()

    if cbar_kw is None:
        cbar_kw = {}

    # Plot the heatmap
    im = ax.imshow(data, **kwargs)

    # Create colorbar
    cbar = ax.figure.colorbar(im, ax=ax, **cbar_kw)
    cbar.ax.set_ylabel(cbarlabel, rotation=-90, va="bottom")

    # Show all ticks and label them with the respective list entries.
    ax.set_xticks(np.arange(data.shape[1]), labels=col_labels)
    ax.set_yticks(np.arange(data.shape[0]), labels=row_labels)

    # Let the horizontal axes labeling appear on top.
    ax.tick_params(top=True, bottom=False,
                   labeltop=True, labelbottom=False)

    # Rotate the tick labels and set their alignment.
    plt.setp(ax.get_xticklabels(), rotation=-30, ha="right",
             rotation_mode="anchor")

    # Turn spines off and create white grid.
    ax.spines[:].set_visible(False)

    ax.set_xticks(np.arange(data.shape[1]+1)-.5, minor=True)
    ax.set_yticks(np.arange(data.shape[0]+1)-.5, minor=True)
    ax.grid(which="minor", color="w", linestyle='-', linewidth=3)
    ax.tick_params(which="minor", bottom=False, left=False)

    return im, cbar


def annotate_heatmap(im, data=None, valfmt="{x:.2f}",
                     textcolors=("black", "white"),
                     threshold=None, **textkw):
    """
    A function to annotate a heatmap.
    Parameters
    ----------
    im
        The AxesImage to be labeled.
    data
        Data used to annotate.  If None, the image's data is used.  Optional.
    valfmt
        The format of the annotations inside the heatmap.  This should either
        use the string format method, e.g. "$ {x:.2f}", or be a
        `matplotlib.ticker.Formatter`.  Optional.
    textcolors
        A pair of colors.  The first is used for values below a threshold,
        the second for those above.  Optional.
    threshold
        Value in data units according to which the colors from textcolors are
        applied.  If None (the default) uses the middle of the colormap as
        separation.  Optional.
    **kwargs
        All other arguments are forwarded to each call to `text` used to create
        the text labels.
    """

    if not isinstance(data, (list, np.ndarray)):
        data = im.get_array()

    # Normalize the threshold to the images color range.
    if threshold is not None:
        threshold = im.norm(threshold)
    else:
        threshold = im.norm(data.max())/2.

    # Set default alignment to center, but allow it to be
    # overwritten by textkw.
    kw = dict(horizontalalignment="center",
              verticalalignment="center")
    kw.update(textkw)

    # Get the formatter in case a string is supplied
    if isinstance(valfmt, str):
        valfmt = matplotlib.ticker.StrMethodFormatter(valfmt)

    # Loop over the data and create a `Text` for each "pixel".
    # Change the text's color depending on the data.
    texts = []
    for i in range(data.shape[0]):
        for j in range(data.shape[1]):
            kw.update(color=textcolors[int(im.norm(data[i, j]) > threshold)])
            text = im.axes.text(j, i, valfmt(data[i, j], None), **kw)
            texts.append(text)

    return texts

def wens_method_heatmap(df, virus_species):
    # Create a dataframe to store the similarity values
    similarity_df = pd.DataFrame(index=virus_species, columns=virus_species)
    # Fill the dataframe with similarity values
    for virus1 in virus_species:
        for virus2 in virus_species:
            if virus1 == virus2:
                sequence1 = df[df['Organism_Name'] == virus1]['Sequence'].values[0]
                sequence2 = df[df['Organism_Name'] == virus2]['Sequence'].values[1]
                similarity = similarity_wen(sequence1, sequence2, WEIGHTS)
                similarity_df.loc[virus1, virus2] = similarity
            else:
                sequence1 = df[df['Organism_Name'] == virus1]['Sequence'].values[0]
                sequence2 = df[df['Organism_Name'] == virus2]['Sequence'].values[0]
                similarity = similarity_wen(sequence1, sequence2, WEIGHTS)
                similarity_df.loc[virus1, virus2] = similarity
    similarity_df = similarity_df.apply(pd.to_numeric)

    # Optional: Handle NaN values if your similarity computation might result in them
    # similarity_df.fillna(0, inplace=True)

    fig, ax = plt.subplots()
    # Plotting
    im = ax.imshow(similarity_df, cmap="YlGn")
    ax.set_xticks(np.arange(len(virus_species)), labels=virus_species)
    ax.set_yticks(np.arange(len(virus_species)), labels=virus_species)
    plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor")
    cbar = ax.figure.colorbar(im, ax=ax)
    cbar.ax.set_ylabel("Similarity", rotation=-90, va="bottom")

    
    return fig
############################################################# Sub-Specie ########################################################
import numpy as np
from scipy.interpolate import interp1d, CubicSpline
import pandas as pd
from tqdm import tqdm

# Define constants
MIN_DISTANCE = 2581
VECTORS = {
    'A': [0.5, -0.8660254],
    'T': [0.5, 0.8660254],
    'G': [0.8660254, -0.5],
    'C': [0.8660254, 0.5]
}

def create_dna_representation_ew_subs(seq):
    """Create a 2D representation of DNA sequence using cubic spline interpolation."""
    # Clean the sequence
    clean_seq = ''.join(char for char in seq if char in VECTORS)
    
    # Convert sequence to numerical representation
    num_seq = np.array([VECTORS[char] for char in clean_seq], dtype=float)
    
    # Calculate cumulative sum
    cum_sum = num_seq.cumsum(axis=0)
    
    # Perform cubic spline interpolation
    x = np.arange(len(cum_sum))
    cs_x = CubicSpline(x, cum_sum[:, 0])
    cs_y = CubicSpline(x, cum_sum[:, 1])
    
    # Interpolate to 2048 points
    x_new = np.linspace(0, len(cum_sum) - 1, 2048)
    return np.column_stack([cs_x(x_new), cs_y(x_new)]).tolist()

def create_dna_representation_for_subs(row):
    """Create a 1D representation of DNA sequence using linear interpolation."""
    min_distance = int(row['min_distance'])
    seq = ''.join(char for char in row['seq'] if char in VECTORS)[:min_distance]
    min_distance = int(min_distance * 0.66)
    
    # Convert sequence to numerical representation
    num_seq = np.array([VECTORS[char] for char in seq], dtype=float)
    
    # Calculate cumulative sum
    cum_sum = num_seq.cumsum(axis=0)
    
    # Perform linear interpolation
    f = interp1d(cum_sum[:, 0], cum_sum[:, 1], kind='cubic', fill_value='extrapolate')
    x_new = np.linspace(0, min_distance - 1, min_distance)
    return f(x_new)

def create_groups_subs(closest_matches):
    """Create groups based on closest matches."""
    groups = {}
    visited = set()

    def dfs(node, group):
        if node in visited:
            return
        visited.add(node)
        group.add(node)
        for neighbor in closest_matches[node]:
            dfs(neighbor, group)

    for i in range(len(closest_matches)):
        if i not in visited:
            group = set()
            dfs(i, group)
            if len(group) > 1:  # Ignore elements with no closest match
                groups[f"group_{len(groups) + 1}"] = sorted(list(group))

    return groups

def process_data_sub_specie(df, species, varience):
    """Process DNA data for a given species."""
    # Filter data for the given species
    df_plot = df[df['organism_name'] == species].reset_index(drop=True).copy()
    
    # Calculate median sequence length and filter sequences
    median = df_plot['seq_len'].median() * 0.8
    df_plot['min_distance'] = median
    df_plot = df_plot[df_plot['seq_len'] > median].reset_index(drop=True)
    
    # Create DNA representations
    df_plot['two_d'] = df_plot.apply(create_dna_representation_for_subs, axis=1)
    values = np.array(df_plot['two_d'].tolist())
    
    # Calculate differences between sequences
    n_rows = values.shape[0]
    b_list = []

    for i in tqdm(range(n_rows)):
        diff = np.abs(values[i:i+1, :] - values).sum(axis=1)
        b_list.append(diff)
    
    bbbb = np.array(b_list)
    print(bbbb)
    np.fill_diagonal(bbbb, 10000)
    median_filter = median * varience
    maxxx = [np.where(bbbb[i] < median_filter)[0] for i in range(len(bbbb))]
    
    # Create groups
    groups = create_groups_subs(maxxx)
    
    # Add group information to dataframe
    df_plot['group'] = 'No Group'
    for group_name, group_indices in groups.items():
        df_plot.loc[group_indices, 'group'] = group_name
    
    # Create 2D representations
    df_plot['two_d'] = df_plot['seq'].apply(create_dna_representation_ew_subs)
    
    return df_plot

    
############################################################# ColorSquare ########################################################
import math
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
import pandas as pd

def _fill_spiral(matrix, seq_colors, k):
        left, top, right, bottom = 0, 0, k-1, k-1
        index = 0
        while left <= right and top <= bottom:
            for i in range(left, right + 1):  # Top row
                if index < len(seq_colors):
                    matrix[top][i] = seq_colors[index]
                    index += 1
            top += 1
            for i in range(top, bottom + 1):  # Right column
                if index < len(seq_colors):
                    matrix[i][right] = seq_colors[index]
                    index += 1
            right -= 1
            for i in range(right, left - 1, -1):  # Bottom row
                if index < len(seq_colors):
                    matrix[bottom][i] = seq_colors[index]
                    index += 1
            bottom -= 1
            for i in range(bottom, top - 1, -1):  # Left column
                if index < len(seq_colors):
                    matrix[i][left] = seq_colors[index]
                    index += 1
            left += 1


def _generate_color_square(sequence,virus, save=False, count=0, label=None):
    # Define the sequence and corresponding colors with indices
    colors = {'a': 0, 't': 1, 'c': 2, 'g': 3, 'n': 4}  # Assign indices to each color
    seq_colors = [colors[char] for char in sequence.lower()]  # Map the sequence to color indices

    # Calculate k (size of the square)
    k = math.ceil(math.sqrt(len(sequence)))

    # Initialize a k x k matrix filled with the index for 'white'
    matrix = np.full((k, k), colors['n'], dtype=int)

    # Fill the matrix in a clockwise spiral
    _fill_spiral(matrix, seq_colors, k)

    # Define a custom color map for plotting
    cmap = ListedColormap(['red', 'green', 'yellow', 'blue', 'white'])

    # Plot the matrix
    plt.figure(figsize=(5, 5))
    plt.imshow(matrix, cmap=cmap, interpolation='nearest')
    if label:
        plt.title(label)
    plt.axis('off')  # Hide the axes
    if save:
        plt.savefig(f'color_square_{virus}_{count}.png', dpi=300, bbox_inches='tight')
    # plt.show()

def plot_color_square(df, virus_species):
    ncols = 3 
    nrows = len(virus_species)
    fig, axeses = plt.subplots(
        nrows=nrows,
        ncols=ncols,
        squeeze=False,
    )
    for i in range(0, ncols * nrows):
        row = i // ncols
        col = i % ncols
        axes = axeses[row, col]
        data = df[i]
        virus = virus_species[row]
                # Define the sequence and corresponding colors with indices
        colors = {'a': 0, 't': 1, 'c': 2, 'g': 3, 'n': 4} 
        # remove all non-nucleotide characters
        data = ''.join([char for char in data.lower() if char in 'atcgn'])
        # Assign indices to each color
        seq_colors = [colors[char] for char in data.lower()]  # Map the sequence to color indices

        # Calculate k (size of the square)
        k = math.ceil(math.sqrt(len(data)))

        # Initialize a k x k matrix filled with the index for 'white'
        matrix = np.full((k, k), colors['n'], dtype=int)

        # Fill the matrix in a clockwise spiral
        _fill_spiral(matrix, seq_colors, k)

        # Define a custom color map for plotting
        cmap = ListedColormap(['red', 'green', 'yellow', 'blue', 'white'])
        axes.imshow(matrix, cmap=cmap, interpolation='nearest')
        axes.set_title(virus)
    return fig
    
    

def generate_color_square(sequence,virus, multi=False, save=False, label=None):
    if multi:
        for i,seq in enumerate(sequence):
            _generate_color_square(seq, virus,save, i, label[i] if label else None)
    else:
        _generate_color_square(sequence, save, label=label)


############################################################# FCGR ########################################################

from typing import Dict, Optional
from collections import namedtuple

# coordinates for x+iy
Coord = namedtuple("Coord", ["x","y"])

# coordinates for a CGR encoding
CGRCoords = namedtuple("CGRCoords", ["N","x","y"])

# coordinates for each nucleotide in the 2d-plane
DEFAULT_COORDS = dict(A=Coord(1,1),C=Coord(-1,1),G=Coord(-1,-1),T=Coord(1,-1))

class CGR:
    "Chaos Game Representation for DNA"
    def __init__(self, coords: Optional[Dict[chr,tuple]]=None):
        self.nucleotide_coords = DEFAULT_COORDS if coords is None else coords
        self.cgr_coords = CGRCoords(0,0,0)

    def nucleotide_by_coords(self,x,y):
        "Get nucleotide by coordinates (x,y)"
        # filter nucleotide by coordinates
        filtered = dict(filter(lambda item: item[1] == Coord(x,y), self.nucleotide_coords.items()))

        return list(filtered.keys())[0]

    def forward(self, nucleotide: str):
        "Compute next CGR coordinates"
        x = (self.cgr_coords.x + self.nucleotide_coords.get(nucleotide).x)/2
        y = (self.cgr_coords.y + self.nucleotide_coords.get(nucleotide).y)/2

        # update cgr_coords
        self.cgr_coords = CGRCoords(self.cgr_coords.N+1,x,y)

    def backward(self,):
        "Compute last CGR coordinates. Current nucleotide can be inferred from (x,y)"
        # get current nucleotide based on coordinates
        n_x,n_y = self.coords_current_nucleotide()
        nucleotide = self.nucleotide_by_coords(n_x,n_y)

        # update coordinates to the previous one
        x = 2*self.cgr_coords.x - n_x
        y = 2*self.cgr_coords.y - n_y

        # update cgr_coords
        self.cgr_coords = CGRCoords(self.cgr_coords.N-1,x,y)

        return nucleotide

    def coords_current_nucleotide(self,):
        x = 1 if self.cgr_coords.x>0 else -1
        y = 1 if self.cgr_coords.y>0 else -1
        return x,y

    def encode(self, sequence: str):
        "From DNA sequence to CGR"
        # reset starting position to (0,0,0)
        self.reset_coords()
        for nucleotide in sequence:
            self.forward(nucleotide)
        return self.cgr_coords

    def reset_coords(self,):
        self.cgr_coords = CGRCoords(0,0,0)

    def decode(self, N:int, x:int, y:int)->str:
        "From CGR to DNA sequence"
        self.cgr_coords = CGRCoords(N,x,y)

        # decoded sequence
        sequence = []

        # Recover the entire genome
        while self.cgr_coords.N>0:
            nucleotide = self.backward()
            sequence.append(nucleotide)
        return "".join(sequence[::-1])
    
    
from itertools import product
from collections import defaultdict
import numpy as np

class FCGR(CGR):
    """Frequency matrix CGR
    an (2**k x 2**k) 2D representation will be created for a
    n-long sequence.
    - k represents the k-mer.
    - 2**k x 2**k = 4**k the total number of k-mers (sequences of length k)
    - pixel value correspond to the value of the frequency for each k-mer
    """

    def __init__(self, k: int,):
        super().__init__()
        self.k = k # k-mer representation
        self.kmers = list("".join(kmer) for kmer in product("ACGT", repeat=self.k))
        self.kmer2pixel = self.kmer2pixel_position()

    def __call__(self, sequence: str):
        "Given a DNA sequence, returns an array with his frequencies in the same order as FCGR"
        self.count_kmers(sequence)

        # Create an empty array to save the FCGR values
        array_size = int(2**self.k)
        freq_matrix = np.zeros((array_size,array_size))

        # Assign frequency to each box in the matrix
        for kmer, freq in self.freq_kmer.items():
            pos_x, pos_y = self.kmer2pixel[kmer]
            freq_matrix[int(pos_x)-1,int(pos_y)-1] = freq
        return freq_matrix

    def count_kmer(self, kmer):
        if "N" not in kmer:
            self.freq_kmer[kmer] += 1

    def count_kmers(self, sequence: str):
        self.freq_kmer = defaultdict(int)
        # representativity of kmers
        last_j = len(sequence) - self.k + 1
        kmers  = (sequence[i:(i+self.k)] for i in range(last_j))
        # count kmers in a dictionary
        list(self.count_kmer(kmer) for kmer in kmers)

    def kmer_probabilities(self, sequence: str):
        self.probabilities = defaultdict(float)
        N=len(sequence)
        for key, value in self.freq_kmer.items():
            self.probabilities[key] = float(value) / (N - self.k + 1)

    def pixel_position(self, kmer: str):
        "Get pixel position in the FCGR matrix for a k-mer"

        coords = self.encode(kmer)
        N,x,y = coords.N, coords.x, coords.y

        # Coordinates from [-1,1]² to [1,2**k]²
        np_coords = np.array([(x + 1)/2, (y + 1)/2]) # move coordinates from [-1,1]² to [0,1]²
        np_coords *= 2**self.k # rescale coordinates from [0,1]² to [0,2**k]²
        x,y = np.ceil(np_coords) # round to upper integer

        # Turn coordinates (cx,cy) into pixel (px,py) position
        # px = 2**k-cy+1, py = cx
        return 2**self.k-int(y)+1, int(x)

    def kmer2pixel_position(self,):
        kmer2pixel = dict()
        for kmer in self.kmers:
            kmer2pixel[kmer] = self.pixel_position(kmer)
        return kmer2pixel
    

from tqdm import tqdm
from pathlib import Path

import numpy as np


class GenerateFCGR:
    def __init__(self,  kmer: int = 5, ):
        self.kmer = kmer
        self.fcgr = FCGR(kmer)
        self.counter = 0 # count number of time a sequence is converted to fcgr


    def __call__(self, list_fasta,):

        for fasta in tqdm(list_fasta, desc="Generating FCGR"):
            self.from_fasta(fasta)




    def from_seq(self, seq: str):
        "Get FCGR from a sequence"
        seq = self.preprocessing(seq)
        chaos = self.fcgr(seq)
        self.counter +=1
        return chaos

    def reset_counter(self,):
        self.counter=0

    @staticmethod
    def preprocessing(seq):
        seq = seq.upper()
        for letter in seq:
          if letter not in "ATCG":
            seq = seq.replace(letter,"N")
        return seq

def plot_fcgr(df, virus_species):
    ncols = 3 
    nrows = len(virus_species)
    fig, axeses = plt.subplots(
        nrows=nrows,
        ncols=ncols,
        squeeze=False,
    )
    for i in range(0, ncols * nrows):
        row = i // ncols
        col = i % ncols
        axes = axeses[row, col]
        data = df[i].upper()
        chaos = GenerateFCGR().from_seq(seq=data)
        virus = virus_species[row]
        axes.imshow(chaos)
        axes.set_title(virus)
    return fig

############################################################# Persistant Homology ########################################################
import numpy as np
import persim
import ripser
import matplotlib.pyplot as plt

NUCLEOTIDE_MAPPING = {
    'a': np.array([1, 0, 0, 0]),
    'c': np.array([0, 1, 0, 0]),
    'g': np.array([0, 0, 1, 0]),
    't': np.array([0, 0, 0, 1])
}

def encode_nucleotide_to_vector(nucleotide):
    return NUCLEOTIDE_MAPPING.get(nucleotide)

def chaos_4d_representation(dna_sequence):
    points = [encode_nucleotide_to_vector(dna_sequence[0])]
    for nucleotide in dna_sequence[1:]:
        vector = encode_nucleotide_to_vector(nucleotide)
        if vector is None:
            continue
        next_point = 0.5 * (points[-1] + vector)
        points.append(next_point)
    return np.array(points)

def persistence_homology(dna_sequence, multi=False, plot=False, sample_rate=7):
    if multi:
        c4dr_points = np.array([chaos_4d_representation(sequence) for sequence in dna_sequence])
        dgm_dna = [ripser.ripser(points[::sample_rate], maxdim=1)['dgms'] for points in c4dr_points]
        if plot:
            persim.plot_diagrams([dgm[1] for dgm in dgm_dna], labels=[f'sequence {i}' for i in range(len(dna_sequence))])
    else:
        c4dr_points = chaos_4d_representation(dna_sequence)
        dgm_dna = ripser.ripser(c4dr_points[::sample_rate], maxdim=1)['dgms']
        if plot:
            persim.plot_diagrams(dgm_dna[1])
    return dgm_dna

def plot_diagrams(
    diagrams,
    plot_only=None,
    title=None,
    xy_range=None,
    labels=None,
    colormap="default",
    size=20,
    ax_color=np.array([0.0, 0.0, 0.0]),
    diagonal=True,
    lifetime=False,
    legend=True,
    show=False,
    ax=None
):
    """A helper function to plot persistence diagrams. 
    Parameters
    ----------
    diagrams: ndarray (n_pairs, 2) or list of diagrams
        A diagram or list of diagrams. If diagram is a list of diagrams, 
        then plot all on the same plot using different colors.
    plot_only: list of numeric
        If specified, an array of only the diagrams that should be plotted.
    title: string, default is None
        If title is defined, add it as title of the plot.
    xy_range: list of numeric [xmin, xmax, ymin, ymax]
        User provided range of axes. This is useful for comparing 
        multiple persistence diagrams.
    labels: string or list of strings
        Legend labels for each diagram. 
        If none are specified, we use H_0, H_1, H_2,... by default.
    colormap: string, default is 'default'
        Any of matplotlib color palettes. 
        Some options are 'default', 'seaborn', 'sequential'. 
        See all available styles with
        .. code:: python
            import matplotlib as mpl
            print(mpl.styles.available)
    size: numeric, default is 20
        Pixel size of each point plotted.
    ax_color: any valid matplotlib color type. 
        See [https://matplotlib.org/api/colors_api.html](https://matplotlib.org/api/colors_api.html) for complete API.
    diagonal: bool, default is True
        Plot the diagonal x=y line.
    lifetime: bool, default is False. If True, diagonal is turned to False.
        Plot life time of each point instead of birth and death. 
        Essentially, visualize (x, y-x).
    legend: bool, default is True
        If true, show the legend.
    show: bool, default is False
        Call plt.show() after plotting. If you are using self.plot() as part 
        of a subplot, set show=False and call plt.show() only once at the end.
    """

    fig, ax = plt.subplots() if ax is None else ax
    plt.style.use(colormap)

    xlabel, ylabel = "Birth", "Death"

    if not isinstance(diagrams, list):
        # Must have diagrams as a list for processing downstream
        diagrams = [diagrams]

    if labels is None:
        # Provide default labels for diagrams if using self.dgm_
        labels = ["$H_{{{}}}$".format(i) for i , _ in enumerate(diagrams)]

    if plot_only:
        diagrams = [diagrams[i] for i in plot_only]
        labels = [labels[i] for i in plot_only]

    if not isinstance(labels, list):
        labels = [labels] * len(diagrams)

    # Construct copy with proper type of each diagram
    # so we can freely edit them.
    diagrams = [dgm.astype(np.float32, copy=True) for dgm in diagrams]

    # find min and max of all visible diagrams
    concat_dgms = np.concatenate(diagrams).flatten()
    has_inf = np.any(np.isinf(concat_dgms))
    finite_dgms = concat_dgms[np.isfinite(concat_dgms)]

    # clever bounding boxes of the diagram
    if not xy_range:
        # define bounds of diagram
        ax_min, ax_max = np.min(finite_dgms), np.max(finite_dgms)
        x_r = ax_max - ax_min

        # Give plot a nice buffer on all sides.
        # ax_range=0 when only one point,
        buffer = 1 if xy_range == 0 else x_r / 5

        x_down = ax_min - buffer / 2
        x_up = ax_max + buffer

        y_down, y_up = x_down, x_up
    else:
        x_down, x_up, y_down, y_up = xy_range

    yr = y_up - y_down

    if lifetime:

        # Don't plot landscape and diagonal at the same time.
        diagonal = False

        # reset y axis so it doesn't go much below zero
        y_down = -yr * 0.05
        y_up = y_down + yr

        # set custom ylabel
        ylabel = "Lifetime"

        # set diagrams to be (x, y-x)
        for dgm in diagrams:
            dgm[:, 1] -= dgm[:, 0]

        # plot horizon line
        ax.plot([x_down, x_up], [0, 0], c=ax_color)

    # Plot diagonal
    if diagonal:
        ax.plot([x_down, x_up], [x_down, x_up], "--", c=ax_color)

    # Plot inf line
    if has_inf:
        # put inf line slightly below top
        b_inf = y_down + yr * 0.95
        ax.plot([x_down, x_up], [b_inf, b_inf], "--", c="k", label=r"$\infty$")

        # convert each inf in each diagram with b_inf
        for dgm in diagrams:
            dgm[np.isinf(dgm)] = b_inf

    # Plot each diagram
    for dgm, label in zip(diagrams, labels):

        # plot persistence pairs
        ax.scatter(dgm[:, 0], dgm[:, 1], size, label=label, edgecolor="none")

        ax.set_xlabel(xlabel)
        ax.set_ylabel(ylabel)

    ax.set_xlim([x_down, x_up])
    ax.set_ylim([y_down, y_up])
    ax.set_aspect('equal', 'box')

    if title is not None:
        ax.set_title(title)

    if legend is True:
        ax.legend(loc="lower right")

    if show is True:
        plt.show()
    return fig, ax


def plot_persistence_homology(df, virus_species):
    # if len(virus_species.unique()) > 1:
        c4dr_points = [chaos_4d_representation(sequence.lower()) for sequence in df]
        dgm_dna = [ripser.ripser(points[::15], maxdim=1)['dgms'] for points in c4dr_points]
        labels =[f'{virus_specie}_{i}' for i, virus_specie in enumerate(virus_species)]
        fig, ax = plot_diagrams([dgm[1] for dgm in dgm_dna], labels=labels)
    # else:
    #     c4dr_points = [chaos_4d_representation(sequence.lower()) for sequence in df]
    #     dgm_dna = [ripser.ripser(points[::10], maxdim=1)['dgms'] for points in c4dr_points]
    #     labels =[f'{virus_specie}_{i}' for i, virus_specie in enumerate(virus_species)]
    #     print(labels)
    #     print(len(dgm_dna))
    #     fig, ax = plot_diagrams([dgm[1] for dgm in dgm_dna], labels=labels)
        return fig
    
def compare_persistence_homology(dna_sequence1, dna_sequence2):
    dgm_dna1 = persistence_homology(dna_sequence1)
    dgm_dna2 = persistence_homology(dna_sequence2)
    distance = persim.sliced_wasserstein(dgm_dna1[1], dgm_dna2[1])
    return distance