Spaces:
Sleeping
Sleeping
Create utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,823 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from shiny import render
|
2 |
+
from shiny.express import input, output, ui
|
3 |
+
from datasets import load_dataset
|
4 |
+
import pandas as pd
|
5 |
+
from pathlib import Path
|
6 |
+
import matplotlib
|
7 |
+
import numpy as np
|
8 |
+
import gradio as gr
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import matplotlib.style as mplstyle
|
11 |
+
from scipy.interpolate import interp1d
|
12 |
+
from typing import Dict, Optional
|
13 |
+
from collections import namedtuple
|
14 |
+
|
15 |
+
|
16 |
+
# Mapping of nucleotides to float coordinates
|
17 |
+
mapping_easy = {
|
18 |
+
'A': np.array([0.5, -0.8660254037844386]),
|
19 |
+
'T': np.array([0.5, 0.8660254037844386]),
|
20 |
+
'G': np.array([0.8660254037844386, -0.5]),
|
21 |
+
'C': np.array([0.8660254037844386, 0.5]),
|
22 |
+
'N': np.array([0, 0])
|
23 |
+
}
|
24 |
+
|
25 |
+
# coordinates for x+iy
|
26 |
+
Coord = namedtuple("Coord", ["x","y"])
|
27 |
+
|
28 |
+
# coordinates for a CGR encoding
|
29 |
+
CGRCoords = namedtuple("CGRCoords", ["N","x","y"])
|
30 |
+
|
31 |
+
# coordinates for each nucleotide in the 2d-plane
|
32 |
+
DEFAULT_COORDS = dict(A=Coord(1,1),C=Coord(-1,1),G=Coord(-1,-1),T=Coord(1,-1))
|
33 |
+
|
34 |
+
# Function to convert a DNA sequence to a list of coordinates
|
35 |
+
def _dna_to_coordinates(dna_sequence, mapping):
|
36 |
+
dna_sequence = dna_sequence.upper()
|
37 |
+
coordinates = np.array([mapping.get(nucleotide, mapping['N']) for nucleotide in dna_sequence])
|
38 |
+
return coordinates
|
39 |
+
|
40 |
+
# Function to create the cumulative sum of a list of coordinates
|
41 |
+
def _get_cumulative_coords(mapped_coords):
|
42 |
+
cumulative_coords = np.cumsum(mapped_coords, axis=0)
|
43 |
+
return cumulative_coords
|
44 |
+
|
45 |
+
# Function to take a list of DNA sequences and plot them in a single figure
|
46 |
+
def plot_2d_sequences(dna_sequences, mapping=mapping_easy, single_sequence=False):
|
47 |
+
fig, ax = plt.subplots()
|
48 |
+
if single_sequence:
|
49 |
+
dna_sequences = [dna_sequences]
|
50 |
+
for dna_sequence in dna_sequences:
|
51 |
+
mapped_coords = _dna_to_coordinates(dna_sequence, mapping)
|
52 |
+
cumulative_coords = _get_cumulative_coords(mapped_coords)
|
53 |
+
ax.plot(*cumulative_coords.T)
|
54 |
+
return fig
|
55 |
+
|
56 |
+
# Function to plot a comparison of DNA sequences
|
57 |
+
def plot_2d_comparison(dna_sequences_grouped, labels, mapping=mapping_easy):
|
58 |
+
fig, ax = plt.subplots()
|
59 |
+
colors = plt.cm.rainbow(np.linspace(0, 1, len(dna_sequences_grouped)))
|
60 |
+
for count, (dna_sequences, color) in enumerate(zip(dna_sequences_grouped, colors)):
|
61 |
+
for dna_sequence in dna_sequences:
|
62 |
+
mapped_coords = _dna_to_coordinates(dna_sequence, mapping)
|
63 |
+
cumulative_coords = _get_cumulative_coords(mapped_coords)
|
64 |
+
ax.plot(*cumulative_coords.T, color=color, label=labels[count])
|
65 |
+
# Only show unique labels in the legend
|
66 |
+
handles, labels = ax.get_legend_handles_labels()
|
67 |
+
by_label = dict(zip(labels, handles))
|
68 |
+
ax.legend(by_label.values(), by_label.keys())
|
69 |
+
return fig
|
70 |
+
|
71 |
+
|
72 |
+
############################################################# Virus Dataset ########################################################
|
73 |
+
#ds = load_dataset('Hack90/virus_tiny')
|
74 |
+
df = pd.read_parquet('virus_ds.parquet')
|
75 |
+
virus = df['Organism_Name'].unique()
|
76 |
+
virus = {v: v for v in virus}
|
77 |
+
|
78 |
+
############################################################# Filter and Select ########################################################
|
79 |
+
def filter_and_select(group):
|
80 |
+
if len(group) >= 3:
|
81 |
+
return group.head(3)
|
82 |
+
|
83 |
+
############################################################# Wens Method ########################################################
|
84 |
+
import numpy as np
|
85 |
+
|
86 |
+
WEIGHTS = {'0100': 1/6, '0101': 2/6, '1100' : 3/6, '0110':3/6, '1101': 4/6, '1110': 5/6,'0111':5/6, '1111': 6/6}
|
87 |
+
LOWEST_LENGTH = 5000
|
88 |
+
|
89 |
+
def _get_subsequences(sequence):
|
90 |
+
return {nuc: [i+1 for i, x in enumerate(sequence) if x == nuc] for nuc in 'ACTG'}
|
91 |
+
|
92 |
+
def _calculate_coordinates_fixed(subsequence, L=LOWEST_LENGTH):
|
93 |
+
return [((2 * np.pi / (L - 1)) * (K-1), np.sqrt((2 * np.pi / (L - 1)) * (K-1))) for K in subsequence]
|
94 |
+
|
95 |
+
def _calculate_weighting_full(sequence, WEIGHTS, L=LOWEST_LENGTH, E=0.0375):
|
96 |
+
weightings = [0]
|
97 |
+
for i in range(1, len(sequence) - 1):
|
98 |
+
if i < len(sequence) - 2:
|
99 |
+
subsequence = sequence[i-1:i+3]
|
100 |
+
comparison_pattern = f"{'1' if subsequence[0] == subsequence[1] else '0'}1{'1' if subsequence[2] == subsequence[1] else '0'}{'1' if subsequence[3] == subsequence[1] else '0'}"
|
101 |
+
weight = WEIGHTS.get(comparison_pattern, 0)
|
102 |
+
weight = weight * E if i > L else weight
|
103 |
+
else:
|
104 |
+
weight = 0
|
105 |
+
weightings.append(weight)
|
106 |
+
weightings.append(0)
|
107 |
+
return weightings
|
108 |
+
|
109 |
+
def _centre_of_mass(polar_coordinates, weightings):
|
110 |
+
x, y = _calculate_standard_coordinates(polar_coordinates)
|
111 |
+
return sum(weightings[i] * ((x[i] - (x[i]*weightings[i]))**2 + (y[i] - y[i]*weightings[i])**2) for i in range(len(x)))
|
112 |
+
|
113 |
+
def _normalised_moment_of_inertia(polar_coordinates, weightings):
|
114 |
+
moment = _centre_of_mass(polar_coordinates, weightings)
|
115 |
+
return np.sqrt(moment / sum(weightings))
|
116 |
+
|
117 |
+
def _calculate_standard_coordinates(polar_coordinates):
|
118 |
+
return [rho * np.cos(theta) for theta, rho in polar_coordinates], [rho * np.sin(theta) for theta, rho in polar_coordinates]
|
119 |
+
|
120 |
+
|
121 |
+
def _moments_of_inertia(polar_coordinates, weightings):
|
122 |
+
return [_normalised_moment_of_inertia(indices, weightings) for subsequence, indices in polar_coordinates.items()]
|
123 |
+
|
124 |
+
def moment_of_inertia(sequence, WEIGHTS, L=5000, E=0.0375):
|
125 |
+
subsequences = _get_subsequences(sequence)
|
126 |
+
polar_coordinates = {subsequence: _calculate_coordinates_fixed(indices, len(sequence)) for subsequence, indices in subsequences.items()}
|
127 |
+
weightings = _calculate_weighting_full(sequence, WEIGHTS, L=L, E=E)
|
128 |
+
return _moments_of_inertia(polar_coordinates, weightings)
|
129 |
+
|
130 |
+
|
131 |
+
def similarity_wen(sequence1, sequence2, WEIGHTS, L=5000, E=0.0375):
|
132 |
+
L = min(len(sequence1), len(sequence2))
|
133 |
+
inertia1 = moment_of_inertia(sequence1, WEIGHTS, L=L, E=E)
|
134 |
+
inertia2 = moment_of_inertia(sequence2, WEIGHTS, L=L, E=E)
|
135 |
+
similarity = np.sqrt(sum((x - y)**2 for x, y in zip(inertia1, inertia2)))
|
136 |
+
return similarity
|
137 |
+
def heatmap(data, row_labels, col_labels, ax=None,
|
138 |
+
cbar_kw=None, cbarlabel="", **kwargs):
|
139 |
+
"""
|
140 |
+
Create a heatmap from a numpy array and two lists of labels.
|
141 |
+
Parameters
|
142 |
+
----------
|
143 |
+
data
|
144 |
+
A 2D numpy array of shape (M, N).
|
145 |
+
row_labels
|
146 |
+
A list or array of length M with the labels for the rows.
|
147 |
+
col_labels
|
148 |
+
A list or array of length N with the labels for the columns.
|
149 |
+
ax
|
150 |
+
A `matplotlib.axes.Axes` instance to which the heatmap is plotted. If
|
151 |
+
not provided, use current axes or create a new one. Optional.
|
152 |
+
cbar_kw
|
153 |
+
A dictionary with arguments to `matplotlib.Figure.colorbar`. Optional.
|
154 |
+
cbarlabel
|
155 |
+
The label for the colorbar. Optional.
|
156 |
+
**kwargs
|
157 |
+
All other arguments are forwarded to `imshow`.
|
158 |
+
"""
|
159 |
+
|
160 |
+
if ax is None:
|
161 |
+
ax = plt.gca()
|
162 |
+
|
163 |
+
if cbar_kw is None:
|
164 |
+
cbar_kw = {}
|
165 |
+
|
166 |
+
# Plot the heatmap
|
167 |
+
im = ax.imshow(data, **kwargs)
|
168 |
+
|
169 |
+
# Create colorbar
|
170 |
+
cbar = ax.figure.colorbar(im, ax=ax, **cbar_kw)
|
171 |
+
cbar.ax.set_ylabel(cbarlabel, rotation=-90, va="bottom")
|
172 |
+
|
173 |
+
# Show all ticks and label them with the respective list entries.
|
174 |
+
ax.set_xticks(np.arange(data.shape[1]), labels=col_labels)
|
175 |
+
ax.set_yticks(np.arange(data.shape[0]), labels=row_labels)
|
176 |
+
|
177 |
+
# Let the horizontal axes labeling appear on top.
|
178 |
+
ax.tick_params(top=True, bottom=False,
|
179 |
+
labeltop=True, labelbottom=False)
|
180 |
+
|
181 |
+
# Rotate the tick labels and set their alignment.
|
182 |
+
plt.setp(ax.get_xticklabels(), rotation=-30, ha="right",
|
183 |
+
rotation_mode="anchor")
|
184 |
+
|
185 |
+
# Turn spines off and create white grid.
|
186 |
+
ax.spines[:].set_visible(False)
|
187 |
+
|
188 |
+
ax.set_xticks(np.arange(data.shape[1]+1)-.5, minor=True)
|
189 |
+
ax.set_yticks(np.arange(data.shape[0]+1)-.5, minor=True)
|
190 |
+
ax.grid(which="minor", color="w", linestyle='-', linewidth=3)
|
191 |
+
ax.tick_params(which="minor", bottom=False, left=False)
|
192 |
+
|
193 |
+
return im, cbar
|
194 |
+
|
195 |
+
|
196 |
+
def annotate_heatmap(im, data=None, valfmt="{x:.2f}",
|
197 |
+
textcolors=("black", "white"),
|
198 |
+
threshold=None, **textkw):
|
199 |
+
"""
|
200 |
+
A function to annotate a heatmap.
|
201 |
+
Parameters
|
202 |
+
----------
|
203 |
+
im
|
204 |
+
The AxesImage to be labeled.
|
205 |
+
data
|
206 |
+
Data used to annotate. If None, the image's data is used. Optional.
|
207 |
+
valfmt
|
208 |
+
The format of the annotations inside the heatmap. This should either
|
209 |
+
use the string format method, e.g. "$ {x:.2f}", or be a
|
210 |
+
`matplotlib.ticker.Formatter`. Optional.
|
211 |
+
textcolors
|
212 |
+
A pair of colors. The first is used for values below a threshold,
|
213 |
+
the second for those above. Optional.
|
214 |
+
threshold
|
215 |
+
Value in data units according to which the colors from textcolors are
|
216 |
+
applied. If None (the default) uses the middle of the colormap as
|
217 |
+
separation. Optional.
|
218 |
+
**kwargs
|
219 |
+
All other arguments are forwarded to each call to `text` used to create
|
220 |
+
the text labels.
|
221 |
+
"""
|
222 |
+
|
223 |
+
if not isinstance(data, (list, np.ndarray)):
|
224 |
+
data = im.get_array()
|
225 |
+
|
226 |
+
# Normalize the threshold to the images color range.
|
227 |
+
if threshold is not None:
|
228 |
+
threshold = im.norm(threshold)
|
229 |
+
else:
|
230 |
+
threshold = im.norm(data.max())/2.
|
231 |
+
|
232 |
+
# Set default alignment to center, but allow it to be
|
233 |
+
# overwritten by textkw.
|
234 |
+
kw = dict(horizontalalignment="center",
|
235 |
+
verticalalignment="center")
|
236 |
+
kw.update(textkw)
|
237 |
+
|
238 |
+
# Get the formatter in case a string is supplied
|
239 |
+
if isinstance(valfmt, str):
|
240 |
+
valfmt = matplotlib.ticker.StrMethodFormatter(valfmt)
|
241 |
+
|
242 |
+
# Loop over the data and create a `Text` for each "pixel".
|
243 |
+
# Change the text's color depending on the data.
|
244 |
+
texts = []
|
245 |
+
for i in range(data.shape[0]):
|
246 |
+
for j in range(data.shape[1]):
|
247 |
+
kw.update(color=textcolors[int(im.norm(data[i, j]) > threshold)])
|
248 |
+
text = im.axes.text(j, i, valfmt(data[i, j], None), **kw)
|
249 |
+
texts.append(text)
|
250 |
+
|
251 |
+
return texts
|
252 |
+
|
253 |
+
def wens_method_heatmap(df, virus_species):
|
254 |
+
# Create a dataframe to store the similarity values
|
255 |
+
similarity_df = pd.DataFrame(index=virus_species, columns=virus_species)
|
256 |
+
# Fill the dataframe with similarity values
|
257 |
+
for virus1 in virus_species:
|
258 |
+
for virus2 in virus_species:
|
259 |
+
if virus1 == virus2:
|
260 |
+
sequence1 = df[df['Organism_Name'] == virus1]['Sequence'].values[0]
|
261 |
+
sequence2 = df[df['Organism_Name'] == virus2]['Sequence'].values[1]
|
262 |
+
similarity = similarity_wen(sequence1, sequence2, WEIGHTS)
|
263 |
+
similarity_df.loc[virus1, virus2] = similarity
|
264 |
+
else:
|
265 |
+
sequence1 = df[df['Organism_Name'] == virus1]['Sequence'].values[0]
|
266 |
+
sequence2 = df[df['Organism_Name'] == virus2]['Sequence'].values[0]
|
267 |
+
similarity = similarity_wen(sequence1, sequence2, WEIGHTS)
|
268 |
+
similarity_df.loc[virus1, virus2] = similarity
|
269 |
+
similarity_df = similarity_df.apply(pd.to_numeric)
|
270 |
+
|
271 |
+
# Optional: Handle NaN values if your similarity computation might result in them
|
272 |
+
# similarity_df.fillna(0, inplace=True)
|
273 |
+
|
274 |
+
fig, ax = plt.subplots()
|
275 |
+
# Plotting
|
276 |
+
im = ax.imshow(similarity_df, cmap="YlGn")
|
277 |
+
ax.set_xticks(np.arange(len(virus_species)), labels=virus_species)
|
278 |
+
ax.set_yticks(np.arange(len(virus_species)), labels=virus_species)
|
279 |
+
plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor")
|
280 |
+
cbar = ax.figure.colorbar(im, ax=ax)
|
281 |
+
cbar.ax.set_ylabel("Similarity", rotation=-90, va="bottom")
|
282 |
+
|
283 |
+
|
284 |
+
return fig
|
285 |
+
|
286 |
+
|
287 |
+
############################################################# ColorSquare ########################################################
|
288 |
+
import math
|
289 |
+
import numpy as np
|
290 |
+
import matplotlib.pyplot as plt
|
291 |
+
from matplotlib.colors import ListedColormap
|
292 |
+
import pandas as pd
|
293 |
+
|
294 |
+
def _fill_spiral(matrix, seq_colors, k):
|
295 |
+
left, top, right, bottom = 0, 0, k-1, k-1
|
296 |
+
index = 0
|
297 |
+
while left <= right and top <= bottom:
|
298 |
+
for i in range(left, right + 1): # Top row
|
299 |
+
if index < len(seq_colors):
|
300 |
+
matrix[top][i] = seq_colors[index]
|
301 |
+
index += 1
|
302 |
+
top += 1
|
303 |
+
for i in range(top, bottom + 1): # Right column
|
304 |
+
if index < len(seq_colors):
|
305 |
+
matrix[i][right] = seq_colors[index]
|
306 |
+
index += 1
|
307 |
+
right -= 1
|
308 |
+
for i in range(right, left - 1, -1): # Bottom row
|
309 |
+
if index < len(seq_colors):
|
310 |
+
matrix[bottom][i] = seq_colors[index]
|
311 |
+
index += 1
|
312 |
+
bottom -= 1
|
313 |
+
for i in range(bottom, top - 1, -1): # Left column
|
314 |
+
if index < len(seq_colors):
|
315 |
+
matrix[i][left] = seq_colors[index]
|
316 |
+
index += 1
|
317 |
+
left += 1
|
318 |
+
|
319 |
+
|
320 |
+
def _generate_color_square(sequence,virus, save=False, count=0, label=None):
|
321 |
+
# Define the sequence and corresponding colors with indices
|
322 |
+
colors = {'a': 0, 't': 1, 'c': 2, 'g': 3, 'n': 4} # Assign indices to each color
|
323 |
+
seq_colors = [colors[char] for char in sequence.lower()] # Map the sequence to color indices
|
324 |
+
|
325 |
+
# Calculate k (size of the square)
|
326 |
+
k = math.ceil(math.sqrt(len(sequence)))
|
327 |
+
|
328 |
+
# Initialize a k x k matrix filled with the index for 'white'
|
329 |
+
matrix = np.full((k, k), colors['n'], dtype=int)
|
330 |
+
|
331 |
+
# Fill the matrix in a clockwise spiral
|
332 |
+
_fill_spiral(matrix, seq_colors, k)
|
333 |
+
|
334 |
+
# Define a custom color map for plotting
|
335 |
+
cmap = ListedColormap(['red', 'green', 'yellow', 'blue', 'white'])
|
336 |
+
|
337 |
+
# Plot the matrix
|
338 |
+
plt.figure(figsize=(5, 5))
|
339 |
+
plt.imshow(matrix, cmap=cmap, interpolation='nearest')
|
340 |
+
if label:
|
341 |
+
plt.title(label)
|
342 |
+
plt.axis('off') # Hide the axes
|
343 |
+
if save:
|
344 |
+
plt.savefig(f'color_square_{virus}_{count}.png', dpi=300, bbox_inches='tight')
|
345 |
+
# plt.show()
|
346 |
+
|
347 |
+
def plot_color_square(df, virus_species):
|
348 |
+
ncols = 3
|
349 |
+
nrows = len(virus_species)
|
350 |
+
fig, axeses = plt.subplots(
|
351 |
+
nrows=nrows,
|
352 |
+
ncols=ncols,
|
353 |
+
squeeze=False,
|
354 |
+
)
|
355 |
+
for i in range(0, ncols * nrows):
|
356 |
+
row = i // ncols
|
357 |
+
col = i % ncols
|
358 |
+
axes = axeses[row, col]
|
359 |
+
data = df[i]
|
360 |
+
virus = virus_species[row]
|
361 |
+
# Define the sequence and corresponding colors with indices
|
362 |
+
colors = {'a': 0, 't': 1, 'c': 2, 'g': 3, 'n': 4}
|
363 |
+
# remove all non-nucleotide characters
|
364 |
+
data = ''.join([char for char in data.lower() if char in 'atcgn'])
|
365 |
+
# Assign indices to each color
|
366 |
+
seq_colors = [colors[char] for char in data.lower()] # Map the sequence to color indices
|
367 |
+
|
368 |
+
# Calculate k (size of the square)
|
369 |
+
k = math.ceil(math.sqrt(len(data)))
|
370 |
+
|
371 |
+
# Initialize a k x k matrix filled with the index for 'white'
|
372 |
+
matrix = np.full((k, k), colors['n'], dtype=int)
|
373 |
+
|
374 |
+
# Fill the matrix in a clockwise spiral
|
375 |
+
_fill_spiral(matrix, seq_colors, k)
|
376 |
+
|
377 |
+
# Define a custom color map for plotting
|
378 |
+
cmap = ListedColormap(['red', 'green', 'yellow', 'blue', 'white'])
|
379 |
+
axes.imshow(matrix, cmap=cmap, interpolation='nearest')
|
380 |
+
axes.set_title(virus)
|
381 |
+
return fig
|
382 |
+
|
383 |
+
|
384 |
+
|
385 |
+
def generate_color_square(sequence,virus, multi=False, save=False, label=None):
|
386 |
+
if multi:
|
387 |
+
for i,seq in enumerate(sequence):
|
388 |
+
_generate_color_square(seq, virus,save, i, label[i] if label else None)
|
389 |
+
else:
|
390 |
+
_generate_color_square(sequence, save, label=label)
|
391 |
+
|
392 |
+
|
393 |
+
############################################################# FCGR ########################################################
|
394 |
+
|
395 |
+
from typing import Dict, Optional
|
396 |
+
from collections import namedtuple
|
397 |
+
|
398 |
+
# coordinates for x+iy
|
399 |
+
Coord = namedtuple("Coord", ["x","y"])
|
400 |
+
|
401 |
+
# coordinates for a CGR encoding
|
402 |
+
CGRCoords = namedtuple("CGRCoords", ["N","x","y"])
|
403 |
+
|
404 |
+
# coordinates for each nucleotide in the 2d-plane
|
405 |
+
DEFAULT_COORDS = dict(A=Coord(1,1),C=Coord(-1,1),G=Coord(-1,-1),T=Coord(1,-1))
|
406 |
+
|
407 |
+
class CGR:
|
408 |
+
"Chaos Game Representation for DNA"
|
409 |
+
def __init__(self, coords: Optional[Dict[chr,tuple]]=None):
|
410 |
+
self.nucleotide_coords = DEFAULT_COORDS if coords is None else coords
|
411 |
+
self.cgr_coords = CGRCoords(0,0,0)
|
412 |
+
|
413 |
+
def nucleotide_by_coords(self,x,y):
|
414 |
+
"Get nucleotide by coordinates (x,y)"
|
415 |
+
# filter nucleotide by coordinates
|
416 |
+
filtered = dict(filter(lambda item: item[1] == Coord(x,y), self.nucleotide_coords.items()))
|
417 |
+
|
418 |
+
return list(filtered.keys())[0]
|
419 |
+
|
420 |
+
def forward(self, nucleotide: str):
|
421 |
+
"Compute next CGR coordinates"
|
422 |
+
x = (self.cgr_coords.x + self.nucleotide_coords.get(nucleotide).x)/2
|
423 |
+
y = (self.cgr_coords.y + self.nucleotide_coords.get(nucleotide).y)/2
|
424 |
+
|
425 |
+
# update cgr_coords
|
426 |
+
self.cgr_coords = CGRCoords(self.cgr_coords.N+1,x,y)
|
427 |
+
|
428 |
+
def backward(self,):
|
429 |
+
"Compute last CGR coordinates. Current nucleotide can be inferred from (x,y)"
|
430 |
+
# get current nucleotide based on coordinates
|
431 |
+
n_x,n_y = self.coords_current_nucleotide()
|
432 |
+
nucleotide = self.nucleotide_by_coords(n_x,n_y)
|
433 |
+
|
434 |
+
# update coordinates to the previous one
|
435 |
+
x = 2*self.cgr_coords.x - n_x
|
436 |
+
y = 2*self.cgr_coords.y - n_y
|
437 |
+
|
438 |
+
# update cgr_coords
|
439 |
+
self.cgr_coords = CGRCoords(self.cgr_coords.N-1,x,y)
|
440 |
+
|
441 |
+
return nucleotide
|
442 |
+
|
443 |
+
def coords_current_nucleotide(self,):
|
444 |
+
x = 1 if self.cgr_coords.x>0 else -1
|
445 |
+
y = 1 if self.cgr_coords.y>0 else -1
|
446 |
+
return x,y
|
447 |
+
|
448 |
+
def encode(self, sequence: str):
|
449 |
+
"From DNA sequence to CGR"
|
450 |
+
# reset starting position to (0,0,0)
|
451 |
+
self.reset_coords()
|
452 |
+
for nucleotide in sequence:
|
453 |
+
self.forward(nucleotide)
|
454 |
+
return self.cgr_coords
|
455 |
+
|
456 |
+
def reset_coords(self,):
|
457 |
+
self.cgr_coords = CGRCoords(0,0,0)
|
458 |
+
|
459 |
+
def decode(self, N:int, x:int, y:int)->str:
|
460 |
+
"From CGR to DNA sequence"
|
461 |
+
self.cgr_coords = CGRCoords(N,x,y)
|
462 |
+
|
463 |
+
# decoded sequence
|
464 |
+
sequence = []
|
465 |
+
|
466 |
+
# Recover the entire genome
|
467 |
+
while self.cgr_coords.N>0:
|
468 |
+
nucleotide = self.backward()
|
469 |
+
sequence.append(nucleotide)
|
470 |
+
return "".join(sequence[::-1])
|
471 |
+
|
472 |
+
|
473 |
+
from itertools import product
|
474 |
+
from collections import defaultdict
|
475 |
+
import numpy as np
|
476 |
+
|
477 |
+
class FCGR(CGR):
|
478 |
+
"""Frequency matrix CGR
|
479 |
+
an (2**k x 2**k) 2D representation will be created for a
|
480 |
+
n-long sequence.
|
481 |
+
- k represents the k-mer.
|
482 |
+
- 2**k x 2**k = 4**k the total number of k-mers (sequences of length k)
|
483 |
+
- pixel value correspond to the value of the frequency for each k-mer
|
484 |
+
"""
|
485 |
+
|
486 |
+
def __init__(self, k: int,):
|
487 |
+
super().__init__()
|
488 |
+
self.k = k # k-mer representation
|
489 |
+
self.kmers = list("".join(kmer) for kmer in product("ACGT", repeat=self.k))
|
490 |
+
self.kmer2pixel = self.kmer2pixel_position()
|
491 |
+
|
492 |
+
def __call__(self, sequence: str):
|
493 |
+
"Given a DNA sequence, returns an array with his frequencies in the same order as FCGR"
|
494 |
+
self.count_kmers(sequence)
|
495 |
+
|
496 |
+
# Create an empty array to save the FCGR values
|
497 |
+
array_size = int(2**self.k)
|
498 |
+
freq_matrix = np.zeros((array_size,array_size))
|
499 |
+
|
500 |
+
# Assign frequency to each box in the matrix
|
501 |
+
for kmer, freq in self.freq_kmer.items():
|
502 |
+
pos_x, pos_y = self.kmer2pixel[kmer]
|
503 |
+
freq_matrix[int(pos_x)-1,int(pos_y)-1] = freq
|
504 |
+
return freq_matrix
|
505 |
+
|
506 |
+
def count_kmer(self, kmer):
|
507 |
+
if "N" not in kmer:
|
508 |
+
self.freq_kmer[kmer] += 1
|
509 |
+
|
510 |
+
def count_kmers(self, sequence: str):
|
511 |
+
self.freq_kmer = defaultdict(int)
|
512 |
+
# representativity of kmers
|
513 |
+
last_j = len(sequence) - self.k + 1
|
514 |
+
kmers = (sequence[i:(i+self.k)] for i in range(last_j))
|
515 |
+
# count kmers in a dictionary
|
516 |
+
list(self.count_kmer(kmer) for kmer in kmers)
|
517 |
+
|
518 |
+
def kmer_probabilities(self, sequence: str):
|
519 |
+
self.probabilities = defaultdict(float)
|
520 |
+
N=len(sequence)
|
521 |
+
for key, value in self.freq_kmer.items():
|
522 |
+
self.probabilities[key] = float(value) / (N - self.k + 1)
|
523 |
+
|
524 |
+
def pixel_position(self, kmer: str):
|
525 |
+
"Get pixel position in the FCGR matrix for a k-mer"
|
526 |
+
|
527 |
+
coords = self.encode(kmer)
|
528 |
+
N,x,y = coords.N, coords.x, coords.y
|
529 |
+
|
530 |
+
# Coordinates from [-1,1]² to [1,2**k]²
|
531 |
+
np_coords = np.array([(x + 1)/2, (y + 1)/2]) # move coordinates from [-1,1]² to [0,1]²
|
532 |
+
np_coords *= 2**self.k # rescale coordinates from [0,1]² to [0,2**k]²
|
533 |
+
x,y = np.ceil(np_coords) # round to upper integer
|
534 |
+
|
535 |
+
# Turn coordinates (cx,cy) into pixel (px,py) position
|
536 |
+
# px = 2**k-cy+1, py = cx
|
537 |
+
return 2**self.k-int(y)+1, int(x)
|
538 |
+
|
539 |
+
def kmer2pixel_position(self,):
|
540 |
+
kmer2pixel = dict()
|
541 |
+
for kmer in self.kmers:
|
542 |
+
kmer2pixel[kmer] = self.pixel_position(kmer)
|
543 |
+
return kmer2pixel
|
544 |
+
|
545 |
+
|
546 |
+
from tqdm import tqdm
|
547 |
+
from pathlib import Path
|
548 |
+
|
549 |
+
import numpy as np
|
550 |
+
|
551 |
+
|
552 |
+
class GenerateFCGR:
|
553 |
+
def __init__(self, kmer: int = 5, ):
|
554 |
+
self.kmer = kmer
|
555 |
+
self.fcgr = FCGR(kmer)
|
556 |
+
self.counter = 0 # count number of time a sequence is converted to fcgr
|
557 |
+
|
558 |
+
|
559 |
+
def __call__(self, list_fasta,):
|
560 |
+
|
561 |
+
for fasta in tqdm(list_fasta, desc="Generating FCGR"):
|
562 |
+
self.from_fasta(fasta)
|
563 |
+
|
564 |
+
|
565 |
+
|
566 |
+
|
567 |
+
def from_seq(self, seq: str):
|
568 |
+
"Get FCGR from a sequence"
|
569 |
+
seq = self.preprocessing(seq)
|
570 |
+
chaos = self.fcgr(seq)
|
571 |
+
self.counter +=1
|
572 |
+
return chaos
|
573 |
+
|
574 |
+
def reset_counter(self,):
|
575 |
+
self.counter=0
|
576 |
+
|
577 |
+
@staticmethod
|
578 |
+
def preprocessing(seq):
|
579 |
+
seq = seq.upper()
|
580 |
+
for letter in seq:
|
581 |
+
if letter not in "ATCG":
|
582 |
+
seq = seq.replace(letter,"N")
|
583 |
+
return seq
|
584 |
+
|
585 |
+
def plot_fcgr(df, virus_species):
|
586 |
+
ncols = 3
|
587 |
+
nrows = len(virus_species)
|
588 |
+
fig, axeses = plt.subplots(
|
589 |
+
nrows=nrows,
|
590 |
+
ncols=ncols,
|
591 |
+
squeeze=False,
|
592 |
+
)
|
593 |
+
for i in range(0, ncols * nrows):
|
594 |
+
row = i // ncols
|
595 |
+
col = i % ncols
|
596 |
+
axes = axeses[row, col]
|
597 |
+
data = df[i].upper()
|
598 |
+
chaos = GenerateFCGR().from_seq(seq=data)
|
599 |
+
virus = virus_species[row]
|
600 |
+
axes.imshow(chaos)
|
601 |
+
axes.set_title(virus)
|
602 |
+
return fig
|
603 |
+
|
604 |
+
############################################################# Persistant Homology ########################################################
|
605 |
+
import numpy as np
|
606 |
+
import persim
|
607 |
+
import ripser
|
608 |
+
import matplotlib.pyplot as plt
|
609 |
+
|
610 |
+
NUCLEOTIDE_MAPPING = {
|
611 |
+
'a': np.array([1, 0, 0, 0]),
|
612 |
+
'c': np.array([0, 1, 0, 0]),
|
613 |
+
'g': np.array([0, 0, 1, 0]),
|
614 |
+
't': np.array([0, 0, 0, 1])
|
615 |
+
}
|
616 |
+
|
617 |
+
def encode_nucleotide_to_vector(nucleotide):
|
618 |
+
return NUCLEOTIDE_MAPPING.get(nucleotide)
|
619 |
+
|
620 |
+
def chaos_4d_representation(dna_sequence):
|
621 |
+
points = [encode_nucleotide_to_vector(dna_sequence[0])]
|
622 |
+
for nucleotide in dna_sequence[1:]:
|
623 |
+
vector = encode_nucleotide_to_vector(nucleotide)
|
624 |
+
if vector is None:
|
625 |
+
continue
|
626 |
+
next_point = 0.5 * (points[-1] + vector)
|
627 |
+
points.append(next_point)
|
628 |
+
return np.array(points)
|
629 |
+
|
630 |
+
def persistence_homology(dna_sequence, multi=False, plot=False, sample_rate=7):
|
631 |
+
if multi:
|
632 |
+
c4dr_points = np.array([chaos_4d_representation(sequence) for sequence in dna_sequence])
|
633 |
+
dgm_dna = [ripser.ripser(points[::sample_rate], maxdim=1)['dgms'] for points in c4dr_points]
|
634 |
+
if plot:
|
635 |
+
persim.plot_diagrams([dgm[1] for dgm in dgm_dna], labels=[f'sequence {i}' for i in range(len(dna_sequence))])
|
636 |
+
else:
|
637 |
+
c4dr_points = chaos_4d_representation(dna_sequence)
|
638 |
+
dgm_dna = ripser.ripser(c4dr_points[::sample_rate], maxdim=1)['dgms']
|
639 |
+
if plot:
|
640 |
+
persim.plot_diagrams(dgm_dna[1])
|
641 |
+
return dgm_dna
|
642 |
+
|
643 |
+
def plot_diagrams(
|
644 |
+
diagrams,
|
645 |
+
plot_only=None,
|
646 |
+
title=None,
|
647 |
+
xy_range=None,
|
648 |
+
labels=None,
|
649 |
+
colormap="default",
|
650 |
+
size=20,
|
651 |
+
ax_color=np.array([0.0, 0.0, 0.0]),
|
652 |
+
diagonal=True,
|
653 |
+
lifetime=False,
|
654 |
+
legend=True,
|
655 |
+
show=False,
|
656 |
+
ax=None
|
657 |
+
):
|
658 |
+
"""A helper function to plot persistence diagrams.
|
659 |
+
Parameters
|
660 |
+
----------
|
661 |
+
diagrams: ndarray (n_pairs, 2) or list of diagrams
|
662 |
+
A diagram or list of diagrams. If diagram is a list of diagrams,
|
663 |
+
then plot all on the same plot using different colors.
|
664 |
+
plot_only: list of numeric
|
665 |
+
If specified, an array of only the diagrams that should be plotted.
|
666 |
+
title: string, default is None
|
667 |
+
If title is defined, add it as title of the plot.
|
668 |
+
xy_range: list of numeric [xmin, xmax, ymin, ymax]
|
669 |
+
User provided range of axes. This is useful for comparing
|
670 |
+
multiple persistence diagrams.
|
671 |
+
labels: string or list of strings
|
672 |
+
Legend labels for each diagram.
|
673 |
+
If none are specified, we use H_0, H_1, H_2,... by default.
|
674 |
+
colormap: string, default is 'default'
|
675 |
+
Any of matplotlib color palettes.
|
676 |
+
Some options are 'default', 'seaborn', 'sequential'.
|
677 |
+
See all available styles with
|
678 |
+
.. code:: python
|
679 |
+
import matplotlib as mpl
|
680 |
+
print(mpl.styles.available)
|
681 |
+
size: numeric, default is 20
|
682 |
+
Pixel size of each point plotted.
|
683 |
+
ax_color: any valid matplotlib color type.
|
684 |
+
See [https://matplotlib.org/api/colors_api.html](https://matplotlib.org/api/colors_api.html) for complete API.
|
685 |
+
diagonal: bool, default is True
|
686 |
+
Plot the diagonal x=y line.
|
687 |
+
lifetime: bool, default is False. If True, diagonal is turned to False.
|
688 |
+
Plot life time of each point instead of birth and death.
|
689 |
+
Essentially, visualize (x, y-x).
|
690 |
+
legend: bool, default is True
|
691 |
+
If true, show the legend.
|
692 |
+
show: bool, default is False
|
693 |
+
Call plt.show() after plotting. If you are using self.plot() as part
|
694 |
+
of a subplot, set show=False and call plt.show() only once at the end.
|
695 |
+
"""
|
696 |
+
|
697 |
+
fig, ax = plt.subplots() if ax is None else ax
|
698 |
+
plt.style.use(colormap)
|
699 |
+
|
700 |
+
xlabel, ylabel = "Birth", "Death"
|
701 |
+
|
702 |
+
if not isinstance(diagrams, list):
|
703 |
+
# Must have diagrams as a list for processing downstream
|
704 |
+
diagrams = [diagrams]
|
705 |
+
|
706 |
+
if labels is None:
|
707 |
+
# Provide default labels for diagrams if using self.dgm_
|
708 |
+
labels = ["$H_{{{}}}$".format(i) for i , _ in enumerate(diagrams)]
|
709 |
+
|
710 |
+
if plot_only:
|
711 |
+
diagrams = [diagrams[i] for i in plot_only]
|
712 |
+
labels = [labels[i] for i in plot_only]
|
713 |
+
|
714 |
+
if not isinstance(labels, list):
|
715 |
+
labels = [labels] * len(diagrams)
|
716 |
+
|
717 |
+
# Construct copy with proper type of each diagram
|
718 |
+
# so we can freely edit them.
|
719 |
+
diagrams = [dgm.astype(np.float32, copy=True) for dgm in diagrams]
|
720 |
+
|
721 |
+
# find min and max of all visible diagrams
|
722 |
+
concat_dgms = np.concatenate(diagrams).flatten()
|
723 |
+
has_inf = np.any(np.isinf(concat_dgms))
|
724 |
+
finite_dgms = concat_dgms[np.isfinite(concat_dgms)]
|
725 |
+
|
726 |
+
# clever bounding boxes of the diagram
|
727 |
+
if not xy_range:
|
728 |
+
# define bounds of diagram
|
729 |
+
ax_min, ax_max = np.min(finite_dgms), np.max(finite_dgms)
|
730 |
+
x_r = ax_max - ax_min
|
731 |
+
|
732 |
+
# Give plot a nice buffer on all sides.
|
733 |
+
# ax_range=0 when only one point,
|
734 |
+
buffer = 1 if xy_range == 0 else x_r / 5
|
735 |
+
|
736 |
+
x_down = ax_min - buffer / 2
|
737 |
+
x_up = ax_max + buffer
|
738 |
+
|
739 |
+
y_down, y_up = x_down, x_up
|
740 |
+
else:
|
741 |
+
x_down, x_up, y_down, y_up = xy_range
|
742 |
+
|
743 |
+
yr = y_up - y_down
|
744 |
+
|
745 |
+
if lifetime:
|
746 |
+
|
747 |
+
# Don't plot landscape and diagonal at the same time.
|
748 |
+
diagonal = False
|
749 |
+
|
750 |
+
# reset y axis so it doesn't go much below zero
|
751 |
+
y_down = -yr * 0.05
|
752 |
+
y_up = y_down + yr
|
753 |
+
|
754 |
+
# set custom ylabel
|
755 |
+
ylabel = "Lifetime"
|
756 |
+
|
757 |
+
# set diagrams to be (x, y-x)
|
758 |
+
for dgm in diagrams:
|
759 |
+
dgm[:, 1] -= dgm[:, 0]
|
760 |
+
|
761 |
+
# plot horizon line
|
762 |
+
ax.plot([x_down, x_up], [0, 0], c=ax_color)
|
763 |
+
|
764 |
+
# Plot diagonal
|
765 |
+
if diagonal:
|
766 |
+
ax.plot([x_down, x_up], [x_down, x_up], "--", c=ax_color)
|
767 |
+
|
768 |
+
# Plot inf line
|
769 |
+
if has_inf:
|
770 |
+
# put inf line slightly below top
|
771 |
+
b_inf = y_down + yr * 0.95
|
772 |
+
ax.plot([x_down, x_up], [b_inf, b_inf], "--", c="k", label=r"$\infty$")
|
773 |
+
|
774 |
+
# convert each inf in each diagram with b_inf
|
775 |
+
for dgm in diagrams:
|
776 |
+
dgm[np.isinf(dgm)] = b_inf
|
777 |
+
|
778 |
+
# Plot each diagram
|
779 |
+
for dgm, label in zip(diagrams, labels):
|
780 |
+
|
781 |
+
# plot persistence pairs
|
782 |
+
ax.scatter(dgm[:, 0], dgm[:, 1], size, label=label, edgecolor="none")
|
783 |
+
|
784 |
+
ax.set_xlabel(xlabel)
|
785 |
+
ax.set_ylabel(ylabel)
|
786 |
+
|
787 |
+
ax.set_xlim([x_down, x_up])
|
788 |
+
ax.set_ylim([y_down, y_up])
|
789 |
+
ax.set_aspect('equal', 'box')
|
790 |
+
|
791 |
+
if title is not None:
|
792 |
+
ax.set_title(title)
|
793 |
+
|
794 |
+
if legend is True:
|
795 |
+
ax.legend(loc="lower right")
|
796 |
+
|
797 |
+
if show is True:
|
798 |
+
plt.show()
|
799 |
+
return fig, ax
|
800 |
+
|
801 |
+
|
802 |
+
def plot_persistence_homology(df, virus_species):
|
803 |
+
# if len(virus_species.unique()) > 1:
|
804 |
+
c4dr_points = [chaos_4d_representation(sequence.lower()) for sequence in df]
|
805 |
+
dgm_dna = [ripser.ripser(points[::15], maxdim=1)['dgms'] for points in c4dr_points]
|
806 |
+
labels =[f'{virus_specie}_{i}' for i, virus_specie in enumerate(virus_species)]
|
807 |
+
fig, ax = plot_diagrams([dgm[1] for dgm in dgm_dna], labels=labels)
|
808 |
+
# else:
|
809 |
+
# c4dr_points = [chaos_4d_representation(sequence.lower()) for sequence in df]
|
810 |
+
# dgm_dna = [ripser.ripser(points[::10], maxdim=1)['dgms'] for points in c4dr_points]
|
811 |
+
# labels =[f'{virus_specie}_{i}' for i, virus_specie in enumerate(virus_species)]
|
812 |
+
# print(labels)
|
813 |
+
# print(len(dgm_dna))
|
814 |
+
# fig, ax = plot_diagrams([dgm[1] for dgm in dgm_dna], labels=labels)
|
815 |
+
return fig
|
816 |
+
|
817 |
+
def compare_persistence_homology(dna_sequence1, dna_sequence2):
|
818 |
+
dgm_dna1 = persistence_homology(dna_sequence1)
|
819 |
+
dgm_dna2 = persistence_homology(dna_sequence2)
|
820 |
+
distance = persim.sliced_wasserstein(dgm_dna1[1], dgm_dna2[1])
|
821 |
+
return distance
|
822 |
+
|
823 |
+
|