Spaces:
Sleeping
Sleeping
Update utils.py
Browse files
utils.py
CHANGED
@@ -300,6 +300,120 @@ def wens_method_heatmap(df, virus_species):
|
|
300 |
|
301 |
|
302 |
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
|
304 |
|
305 |
############################################################# ColorSquare ########################################################
|
|
|
300 |
|
301 |
|
302 |
return fig
|
303 |
+
############################################################# Sub-Specie ########################################################
|
304 |
+
import numpy as np
|
305 |
+
from scipy.interpolate import interp1d, CubicSpline
|
306 |
+
import pandas as pd
|
307 |
+
from tqdm import tqdm
|
308 |
+
|
309 |
+
# Define constants
|
310 |
+
MIN_DISTANCE = 2581
|
311 |
+
VECTORS = {
|
312 |
+
'A': [0.5, -0.8660254],
|
313 |
+
'T': [0.5, 0.8660254],
|
314 |
+
'G': [0.8660254, -0.5],
|
315 |
+
'C': [0.8660254, 0.5]
|
316 |
+
}
|
317 |
+
|
318 |
+
def create_dna_representation_ew_subs(seq):
|
319 |
+
"""Create a 2D representation of DNA sequence using cubic spline interpolation."""
|
320 |
+
# Clean the sequence
|
321 |
+
clean_seq = ''.join(char for char in seq if char in VECTORS)
|
322 |
+
|
323 |
+
# Convert sequence to numerical representation
|
324 |
+
num_seq = np.array([VECTORS[char] for char in clean_seq], dtype=float)
|
325 |
+
|
326 |
+
# Calculate cumulative sum
|
327 |
+
cum_sum = num_seq.cumsum(axis=0)
|
328 |
+
|
329 |
+
# Perform cubic spline interpolation
|
330 |
+
x = np.arange(len(cum_sum))
|
331 |
+
cs_x = CubicSpline(x, cum_sum[:, 0])
|
332 |
+
cs_y = CubicSpline(x, cum_sum[:, 1])
|
333 |
+
|
334 |
+
# Interpolate to 2048 points
|
335 |
+
x_new = np.linspace(0, len(cum_sum) - 1, 2048)
|
336 |
+
return np.column_stack([cs_x(x_new), cs_y(x_new)]).tolist()
|
337 |
+
|
338 |
+
def create_dna_representation_for_subs(row):
|
339 |
+
"""Create a 1D representation of DNA sequence using linear interpolation."""
|
340 |
+
min_distance = int(row['min_distance'])
|
341 |
+
seq = ''.join(char for char in row['seq'] if char in VECTORS)[:min_distance]
|
342 |
+
min_distance = int(min_distance * 0.66)
|
343 |
+
|
344 |
+
# Convert sequence to numerical representation
|
345 |
+
num_seq = np.array([VECTORS[char] for char in seq], dtype=float)
|
346 |
+
|
347 |
+
# Calculate cumulative sum
|
348 |
+
cum_sum = num_seq.cumsum(axis=0)
|
349 |
+
|
350 |
+
# Perform linear interpolation
|
351 |
+
f = interp1d(cum_sum[:, 0], cum_sum[:, 1], kind='cubic', fill_value='extrapolate')
|
352 |
+
x_new = np.linspace(0, min_distance - 1, min_distance)
|
353 |
+
return f(x_new)
|
354 |
+
|
355 |
+
def create_groups_subs(closest_matches):
|
356 |
+
"""Create groups based on closest matches."""
|
357 |
+
groups = {}
|
358 |
+
visited = set()
|
359 |
+
|
360 |
+
def dfs(node, group):
|
361 |
+
if node in visited:
|
362 |
+
return
|
363 |
+
visited.add(node)
|
364 |
+
group.add(node)
|
365 |
+
for neighbor in closest_matches[node]:
|
366 |
+
dfs(neighbor, group)
|
367 |
+
|
368 |
+
for i in range(len(closest_matches)):
|
369 |
+
if i not in visited:
|
370 |
+
group = set()
|
371 |
+
dfs(i, group)
|
372 |
+
if len(group) > 1: # Ignore elements with no closest match
|
373 |
+
groups[f"group_{len(groups) + 1}"] = sorted(list(group))
|
374 |
+
|
375 |
+
return groups
|
376 |
+
|
377 |
+
def process_data_sub_specie(df, species):
|
378 |
+
"""Process DNA data for a given species."""
|
379 |
+
# Filter data for the given species
|
380 |
+
df_plot = df[df['organism_name'] == species].reset_index(drop=True).copy()
|
381 |
+
|
382 |
+
# Calculate median sequence length and filter sequences
|
383 |
+
median = df_plot['seq_len'].median() * 0.8
|
384 |
+
df_plot['min_distance'] = median
|
385 |
+
df_plot = df_plot[df_plot['seq_len'] > median].reset_index(drop=True)
|
386 |
+
|
387 |
+
# Create DNA representations
|
388 |
+
df_plot['two_d'] = df_plot.apply(create_dna_representation_for_subs, axis=1)
|
389 |
+
values = np.array(df_plot['two_d'].tolist())
|
390 |
+
|
391 |
+
# Calculate differences between sequences
|
392 |
+
n_rows = values.shape[0]
|
393 |
+
b_list = []
|
394 |
+
|
395 |
+
for i in tqdm(range(n_rows)):
|
396 |
+
diff = np.abs(values[i:i+1, :] - values).sum(axis=1)
|
397 |
+
b_list.append(diff)
|
398 |
+
|
399 |
+
bbbb = np.array(b_list)
|
400 |
+
print(bbbb)
|
401 |
+
np.fill_diagonal(bbbb, 10000)
|
402 |
+
median_filter = median * 3
|
403 |
+
maxxx = [np.where(bbbb[i] < median_filter)[0] for i in range(len(bbbb))]
|
404 |
+
|
405 |
+
# Create groups
|
406 |
+
groups = create_groups_subs(maxxx)
|
407 |
+
|
408 |
+
# Add group information to dataframe
|
409 |
+
df_plot['group'] = 'No Group'
|
410 |
+
for group_name, group_indices in groups.items():
|
411 |
+
df_plot.loc[group_indices, 'group'] = group_name
|
412 |
+
|
413 |
+
# Create 2D representations
|
414 |
+
df_plot['two_d'] = df_plot['seq'].apply(create_dna_representation_ew_subs)
|
415 |
+
|
416 |
+
return df_plot
|
417 |
|
418 |
|
419 |
############################################################# ColorSquare ########################################################
|