personality / app.py
Fralet's picture
Update app.py
8853706 verified
raw
history blame
2.79 kB
import streamlit as st
import pandas as pd
from transformers import pipeline
import re
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
import logging
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Download necessary NLTK resources
nltk.download('stopwords')
nltk.download('wordnet')
# Initialize the zero-shot classification pipeline
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
# Streamlit interface setup
st.title("Resume-based Personality Prediction by Serikov Ayanbek")
resume_text = st.text_area("Enter Resume Text Here", height=300)
# Load data from Excel
data = pd.read_excel("ResponseTest.xlsx")
data_open = pd.read_excel("ResponseOpen.xlsx")
# Define preprocessing function
def preprocess_text(text):
text = re.sub(r'\W', ' ', str(text))
text = text.lower()
text = re.sub(r'\s+[a-z]\s+', ' ', text)
text = re.sub(r'^[a-z]\s+', ' ', text)
text = re.sub(r'\s+', ' ', text)
stop_words = set(stopwords.words('english'))
lemmatizer = WordNetLemmatizer()
tokens = text.split()
tokens = [lemmatizer.lemmatize(word) for word in tokens if word not in stop_words]
return ' '.join(tokens)
# Prepare the data for prediction
data['processed_text'] = data[['CV/Resume'] + [f'Q{i}' for i in range(1, 37)]].agg(lambda x: ', '.join(x), axis=1).apply(preprocess_text)
data_open['processed_text_open'] = data_open[['Demo_F', 'Question']].agg(' '.join, axis=1).apply(preprocess_text)
data_open['processed_text_mopen'] = data_open[['Demo_M', 'Question']].agg(' '.join, axis=1).apply(preprocess_text)
labels = ["Peacemaker", "Loyalist", "Achiever", "Reformer", "Individualist", "Helper", "Challenger", "Investigator", "Enthusiast"]
# Function to predict personality and log the predictions
def predict_and_log(data, prediction_column, process_text_column, custom_labels=None):
for index, row in data.iterrows():
processed_text = row[process_text_column]
if custom_labels:
result = classifier(processed_text, [row[label] for label in custom_labels])
else:
result = classifier(processed_text, labels)
highest_score_label = result['labels'][0]
data.at[index, prediction_column] = highest_score_label
logging.info(f"Row {index}: Predicted - {highest_score_label}")
# Predict and log results for each DataFrame
predict_and_log(data, 'Predicted', 'processed_text', ['MAX1', 'MAX2', 'MAX3'])
predict_and_log(data_open, 'Predicted_F', 'processed_text_open')
predict_and_log(data_open, 'Predicted_M', 'processed_text_mopen')
# Optionally display a confirmation message
st.write("Predictions have been logged. Check your logs for details.")