File size: 2,785 Bytes
1b50b66
895141b
324d859
2ee3ecc
c05213f
2ee3ecc
 
8853706
 
 
 
76aff4b
 
2ee3ecc
 
1b50b66
e27efab
7711d36
1b50b66
76aff4b
b4628ad
d605d91
76aff4b
 
bb3c6bc
 
76aff4b
bb3c6bc
76aff4b
 
 
a1a24b4
76aff4b
75a0105
76aff4b
 
 
 
 
2ee3ecc
bb3c6bc
 
 
 
d605d91
6297210
48b2405
8853706
 
 
 
 
 
 
 
 
 
 
5b10278
8853706
 
 
 
d605d91
8853706
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import streamlit as st
import pandas as pd
from transformers import pipeline
import re
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
import logging

# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# Download necessary NLTK resources
nltk.download('stopwords')
nltk.download('wordnet')

# Initialize the zero-shot classification pipeline
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")

# Streamlit interface setup
st.title("Resume-based Personality Prediction by Serikov Ayanbek")
resume_text = st.text_area("Enter Resume Text Here", height=300)

# Load data from Excel
data = pd.read_excel("ResponseTest.xlsx")
data_open = pd.read_excel("ResponseOpen.xlsx")

# Define preprocessing function
def preprocess_text(text):
    text = re.sub(r'\W', ' ', str(text))
    text = text.lower()
    text = re.sub(r'\s+[a-z]\s+', ' ', text)
    text = re.sub(r'^[a-z]\s+', ' ', text)
    text = re.sub(r'\s+', ' ', text)
    stop_words = set(stopwords.words('english'))
    lemmatizer = WordNetLemmatizer()
    tokens = text.split()
    tokens = [lemmatizer.lemmatize(word) for word in tokens if word not in stop_words]
    return ' '.join(tokens)

# Prepare the data for prediction
data['processed_text'] = data[['CV/Resume'] + [f'Q{i}' for i in range(1, 37)]].agg(lambda x: ', '.join(x), axis=1).apply(preprocess_text)
data_open['processed_text_open'] = data_open[['Demo_F', 'Question']].agg(' '.join, axis=1).apply(preprocess_text)
data_open['processed_text_mopen'] = data_open[['Demo_M', 'Question']].agg(' '.join, axis=1).apply(preprocess_text)

labels = ["Peacemaker", "Loyalist", "Achiever", "Reformer", "Individualist", "Helper", "Challenger", "Investigator", "Enthusiast"]

# Function to predict personality and log the predictions
def predict_and_log(data, prediction_column, process_text_column, custom_labels=None):
    for index, row in data.iterrows():
        processed_text = row[process_text_column]
        if custom_labels:
            result = classifier(processed_text, [row[label] for label in custom_labels])
        else:
            result = classifier(processed_text, labels)
        highest_score_label = result['labels'][0]
        data.at[index, prediction_column] = highest_score_label
        logging.info(f"Row {index}: Predicted - {highest_score_label}")

# Predict and log results for each DataFrame
predict_and_log(data, 'Predicted', 'processed_text', ['MAX1', 'MAX2', 'MAX3'])
predict_and_log(data_open, 'Predicted_F', 'processed_text_open')
predict_and_log(data_open, 'Predicted_M', 'processed_text_mopen')

# Optionally display a confirmation message
st.write("Predictions have been logged. Check your logs for details.")