Spaces:
Sleeping
Sleeping
File size: 2,785 Bytes
1b50b66 895141b 324d859 2ee3ecc c05213f 2ee3ecc 8853706 76aff4b 2ee3ecc 1b50b66 e27efab 7711d36 1b50b66 76aff4b b4628ad d605d91 76aff4b bb3c6bc 76aff4b bb3c6bc 76aff4b a1a24b4 76aff4b 75a0105 76aff4b 2ee3ecc bb3c6bc d605d91 6297210 48b2405 8853706 5b10278 8853706 d605d91 8853706 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
import streamlit as st
import pandas as pd
from transformers import pipeline
import re
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
import logging
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Download necessary NLTK resources
nltk.download('stopwords')
nltk.download('wordnet')
# Initialize the zero-shot classification pipeline
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
# Streamlit interface setup
st.title("Resume-based Personality Prediction by Serikov Ayanbek")
resume_text = st.text_area("Enter Resume Text Here", height=300)
# Load data from Excel
data = pd.read_excel("ResponseTest.xlsx")
data_open = pd.read_excel("ResponseOpen.xlsx")
# Define preprocessing function
def preprocess_text(text):
text = re.sub(r'\W', ' ', str(text))
text = text.lower()
text = re.sub(r'\s+[a-z]\s+', ' ', text)
text = re.sub(r'^[a-z]\s+', ' ', text)
text = re.sub(r'\s+', ' ', text)
stop_words = set(stopwords.words('english'))
lemmatizer = WordNetLemmatizer()
tokens = text.split()
tokens = [lemmatizer.lemmatize(word) for word in tokens if word not in stop_words]
return ' '.join(tokens)
# Prepare the data for prediction
data['processed_text'] = data[['CV/Resume'] + [f'Q{i}' for i in range(1, 37)]].agg(lambda x: ', '.join(x), axis=1).apply(preprocess_text)
data_open['processed_text_open'] = data_open[['Demo_F', 'Question']].agg(' '.join, axis=1).apply(preprocess_text)
data_open['processed_text_mopen'] = data_open[['Demo_M', 'Question']].agg(' '.join, axis=1).apply(preprocess_text)
labels = ["Peacemaker", "Loyalist", "Achiever", "Reformer", "Individualist", "Helper", "Challenger", "Investigator", "Enthusiast"]
# Function to predict personality and log the predictions
def predict_and_log(data, prediction_column, process_text_column, custom_labels=None):
for index, row in data.iterrows():
processed_text = row[process_text_column]
if custom_labels:
result = classifier(processed_text, [row[label] for label in custom_labels])
else:
result = classifier(processed_text, labels)
highest_score_label = result['labels'][0]
data.at[index, prediction_column] = highest_score_label
logging.info(f"Row {index}: Predicted - {highest_score_label}")
# Predict and log results for each DataFrame
predict_and_log(data, 'Predicted', 'processed_text', ['MAX1', 'MAX2', 'MAX3'])
predict_and_log(data_open, 'Predicted_F', 'processed_text_open')
predict_and_log(data_open, 'Predicted_M', 'processed_text_mopen')
# Optionally display a confirmation message
st.write("Predictions have been logged. Check your logs for details.")
|