Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import pipeline
|
3 |
import pandas as pd
|
|
|
4 |
import re
|
5 |
import nltk
|
6 |
from nltk.corpus import stopwords
|
@@ -13,14 +13,14 @@ nltk.download('wordnet')
|
|
13 |
# Initialize the zero-shot classification pipeline
|
14 |
classifier = pipeline("zero-shot-classification", model="Fralet/personality")
|
15 |
|
16 |
-
# Define the candidate labels
|
17 |
default_labels = ["Peacemaker", "Loyalist", "Achiever", "Reformer", "Individualist", "Helper", "Challenger", "Investigator", "Enthusiast"]
|
18 |
|
19 |
# Streamlit interface setup
|
20 |
st.title("Resume-based Personality Prediction by Serikov Ayanbek")
|
21 |
|
22 |
# Load data from Excel
|
23 |
-
data = pd.read_excel("
|
24 |
|
25 |
# Preprocess text function
|
26 |
def preprocess_text(text):
|
@@ -28,30 +28,32 @@ def preprocess_text(text):
|
|
28 |
text = text.lower()
|
29 |
text = re.sub(r'\s+[a-z]\s+', ' ', text)
|
30 |
text = re.sub(r'^[a-z]\s+', ' ', text)
|
31 |
-
text
|
32 |
stop_words = set(stopwords.words('english'))
|
33 |
lemmatizer = WordNetLemmatizer()
|
34 |
tokens = text.split()
|
35 |
tokens = [lemmatizer.lemmatize(word) for word in tokens if word not in stop_words]
|
36 |
return ' '.join(tokens)
|
37 |
|
38 |
-
#
|
|
|
|
|
|
|
|
|
39 |
user_labels = st.text_input("Enter custom labels separated by comma (optional)")
|
40 |
labels = user_labels.split(',') if user_labels else default_labels
|
41 |
-
|
42 |
-
# Prediction confidence threshold
|
43 |
confidence_threshold = st.slider("Confidence Threshold", 0.0, 1.0, 0.5)
|
44 |
|
45 |
if st.button("Predict Personality"):
|
46 |
-
#
|
47 |
-
|
48 |
-
data['combined_text'] = data[['CV/Resume'] + question_columns].agg(' '.join, axis=1)
|
49 |
-
data['processed_text'] = data['combined_text'].apply(preprocess_text)
|
50 |
|
51 |
-
#
|
52 |
-
|
|
|
53 |
|
54 |
-
|
55 |
-
data['
|
56 |
-
st.dataframe(data[['True_label', 'Predicted', 'predicted_labels']])
|
57 |
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
2 |
import pandas as pd
|
3 |
+
from transformers import pipeline
|
4 |
import re
|
5 |
import nltk
|
6 |
from nltk.corpus import stopwords
|
|
|
13 |
# Initialize the zero-shot classification pipeline
|
14 |
classifier = pipeline("zero-shot-classification", model="Fralet/personality")
|
15 |
|
16 |
+
# Define the default candidate labels (modifiable if different labels are needed)
|
17 |
default_labels = ["Peacemaker", "Loyalist", "Achiever", "Reformer", "Individualist", "Helper", "Challenger", "Investigator", "Enthusiast"]
|
18 |
|
19 |
# Streamlit interface setup
|
20 |
st.title("Resume-based Personality Prediction by Serikov Ayanbek")
|
21 |
|
22 |
# Load data from Excel
|
23 |
+
data = pd.read_excel("your_excel_file.xlsx") # Adjust file path/name as necessary
|
24 |
|
25 |
# Preprocess text function
|
26 |
def preprocess_text(text):
|
|
|
28 |
text = text.lower()
|
29 |
text = re.sub(r'\s+[a-z]\s+', ' ', text)
|
30 |
text = re.sub(r'^[a-z]\s+', ' ', text)
|
31 |
+
text is re.sub(r'\s+', ' ', text)
|
32 |
stop_words = set(stopwords.words('english'))
|
33 |
lemmatizer = WordNetLemmatizer()
|
34 |
tokens = text.split()
|
35 |
tokens = [lemmatizer.lemmatize(word) for word in tokens if word not in stop_words]
|
36 |
return ' '.join(tokens)
|
37 |
|
38 |
+
# Combine relevant text columns
|
39 |
+
data['combined_text'] = data[['CV/Resume'] + [f'Q{i}' for i in range(1, 37)]].agg(' '.join, axis=1)
|
40 |
+
data['processed_text'] = data['combined_text'].apply(preprocess_text)
|
41 |
+
|
42 |
+
# Streamlit user inputs
|
43 |
user_labels = st.text_input("Enter custom labels separated by comma (optional)")
|
44 |
labels = user_labels.split(',') if user_labels else default_labels
|
|
|
|
|
45 |
confidence_threshold = st.slider("Confidence Threshold", 0.0, 1.0, 0.5)
|
46 |
|
47 |
if st.button("Predict Personality"):
|
48 |
+
# Predict personality from processed text
|
49 |
+
data['predictions'] = data['processed_text'].apply(lambda x: classifier(x, labels))
|
|
|
|
|
50 |
|
51 |
+
# Extract predictions above confidence threshold and display alongside MAX labels
|
52 |
+
data['predicted_labels'] = data['predictions'].apply(lambda x: {label: f"{score*100:.2f}%" for label, score in zip(x['labels'], x['scores']) if score >= confidence_threshold})
|
53 |
+
data['MAX_labels'] = data.apply(lambda x: [x['MAX1'], x['MAX2'], x['MAX3']], axis=1)
|
54 |
|
55 |
+
st.write("Predictions and Labels:")
|
56 |
+
st.dataframe(data[['True_label', 'Predicted', 'predicted_labels', 'MAX_labels']])
|
|
|
57 |
|
58 |
+
# Run this last part to show the DataFrame outside the button press if needed
|
59 |
+
st.dataframe(data)
|