Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,12 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
from transformers import pipeline
|
3 |
import re
|
4 |
import nltk
|
5 |
from nltk.corpus import stopwords
|
6 |
from nltk.stem import WordNetLemmatizer
|
|
|
|
|
7 |
nltk.download('stopwords')
|
8 |
nltk.download('wordnet')
|
9 |
|
@@ -13,9 +16,24 @@ classifier = pipeline("zero-shot-classification", model="Fralet/personality")
|
|
13 |
# Define the candidate labels according to the Enneagram types
|
14 |
default_labels = ["Peacemaker", "Loyalist", "Achiever", "Reformer", "Individualist", "Helper", "Challenger", "Investigator", "Enthusiast"]
|
15 |
|
16 |
-
# Streamlit interface
|
17 |
st.title("Resume-based Personality Prediction by Serikov Ayanbek")
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
# User-defined labels option
|
21 |
user_labels = st.text_input("Enter custom labels separated by comma (optional)")
|
@@ -25,30 +43,15 @@ labels = user_labels.split(',') if user_labels else default_labels
|
|
25 |
confidence_threshold = st.slider("Confidence Threshold", 0.0, 1.0, 0.5)
|
26 |
|
27 |
if st.button("Predict Personality"):
|
28 |
-
#
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
text = re.sub(r'\s+[a-z]\s+', ' ', text)
|
33 |
-
text = re.sub(r'^[a-z]\s+', ' ', text)
|
34 |
-
text = re.sub(r'\s+', ' ', text)
|
35 |
-
stop_words = set(stopwords.words('english'))
|
36 |
-
lemmatizer = WordNetLemmatizer()
|
37 |
-
tokens = text.split()
|
38 |
-
tokens = [lemmatizer.lemmatize(word) for word in tokens if word not in stop_words]
|
39 |
-
return ' '.join(tokens)
|
40 |
-
|
41 |
-
processed_text = preprocess_text(resume_text)
|
42 |
|
43 |
-
# Make
|
44 |
-
|
45 |
|
46 |
-
#
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
if score >= confidence_threshold:
|
51 |
-
st.write(f"{label}: {score*100:.2f}%")
|
52 |
-
displayed = True
|
53 |
-
if not displayed:
|
54 |
-
st.write("No predictions exceed the confidence threshold.")
|
|
|
1 |
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
from transformers import pipeline
|
4 |
import re
|
5 |
import nltk
|
6 |
from nltk.corpus import stopwords
|
7 |
from nltk.stem import WordNetLemmatizer
|
8 |
+
|
9 |
+
# Download necessary NLTK resources
|
10 |
nltk.download('stopwords')
|
11 |
nltk.download('wordnet')
|
12 |
|
|
|
16 |
# Define the candidate labels according to the Enneagram types
|
17 |
default_labels = ["Peacemaker", "Loyalist", "Achiever", "Reformer", "Individualist", "Helper", "Challenger", "Investigator", "Enthusiast"]
|
18 |
|
19 |
+
# Streamlit interface setup
|
20 |
st.title("Resume-based Personality Prediction by Serikov Ayanbek")
|
21 |
+
|
22 |
+
# Load data from Excel
|
23 |
+
data = pd.read_excel("ResponseTest.xls") # Replace 'your_excel_file.xlsx' with your actual file name
|
24 |
+
|
25 |
+
# Preprocess text function
|
26 |
+
def preprocess_text(text):
|
27 |
+
text = re.sub(r'\W', ' ', str(text))
|
28 |
+
text = text.lower()
|
29 |
+
text = re.sub(r'\s+[a-z]\s+', ' ', text)
|
30 |
+
text = re.sub(r'^[a-z]\s+', ' ', text)
|
31 |
+
text = re.sub(r'\s+', ' ', text)
|
32 |
+
stop_words = set(stopwords.words('english'))
|
33 |
+
lemmatizer = WordNetLemmatizer()
|
34 |
+
tokens = text.split()
|
35 |
+
tokens = [lemmatizer.lemmatize(word) for word in tokens if word not in stop_words]
|
36 |
+
return ' '.join(tokens)
|
37 |
|
38 |
# User-defined labels option
|
39 |
user_labels = st.text_input("Enter custom labels separated by comma (optional)")
|
|
|
43 |
confidence_threshold = st.slider("Confidence Threshold", 0.0, 1.0, 0.5)
|
44 |
|
45 |
if st.button("Predict Personality"):
|
46 |
+
# Combine relevant text columns
|
47 |
+
question_columns = [f'Q{i}' for i in range(1, 37)] # Adjust range if there are more or fewer question columns
|
48 |
+
data['combined_text'] = data[['CV/Resume'] + question_columns].agg(' '.join, axis=1)
|
49 |
+
data['processed_text'] = data['combined_text'].apply(preprocess_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
# Make predictions
|
52 |
+
predictions = data['processed_text'].apply(lambda x: classifier(x, labels))
|
53 |
|
54 |
+
# Extract and display predictions
|
55 |
+
data['predicted_labels'] = predictions.apply(lambda x: [label for label, score in zip(x['labels'], x['scores']) if score >= confidence_threshold])
|
56 |
+
st.dataframe(data[['True_label', 'Predicted', 'predicted_labels']])
|
57 |
+
|
|
|
|
|
|
|
|
|
|