import streamlit as st import pandas as pd from transformers import pipeline import re import nltk from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer import logging # Setup logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') # Download necessary NLTK resources nltk.download('stopwords') nltk.download('wordnet') # Initialize the zero-shot classification pipeline classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") # Streamlit interface setup st.title("Resume-based Personality Prediction by Serikov Ayanbek") resume_text = st.text_area("Enter Resume Text Here", height=300) # Load data from Excel data = pd.read_excel("ResponseTest.xlsx") data_open = pd.read_excel("ResponseOpen.xlsx") # Define preprocessing function def preprocess_text(text): text = re.sub(r'\W', ' ', str(text)) text = text.lower() text = re.sub(r'\s+[a-z]\s+', ' ', text) text = re.sub(r'^[a-z]\s+', ' ', text) text = re.sub(r'\s+', ' ', text) stop_words = set(stopwords.words('english')) lemmatizer = WordNetLemmatizer() tokens = text.split() tokens = [lemmatizer.lemmatize(word) for word in tokens if word not in stop_words] return ' '.join(tokens) # Prepare the data for prediction data['processed_text'] = data[['CV/Resume'] + [f'Q{i}' for i in range(1, 37)]].agg(lambda x: ', '.join(x), axis=1).apply(preprocess_text) data_open['processed_text_open'] = data_open[['Demo_F', 'Question']].agg(' '.join, axis=1).apply(preprocess_text) data_open['processed_text_mopen'] = data_open[['Demo_M', 'Question']].agg(' '.join, axis=1).apply(preprocess_text) labels = ["Peacemaker", "Loyalist", "Achiever", "Reformer", "Individualist", "Helper", "Challenger", "Investigator", "Enthusiast"] # Function to predict personality and log the predictions def predict_and_log(data, prediction_column, process_text_column, custom_labels=None): for index, row in data.iterrows(): processed_text = row[process_text_column] if custom_labels: result = classifier(processed_text, [row[label] for label in custom_labels]) else: result = classifier(processed_text, labels) highest_score_label = result['labels'][0] data.at[index, prediction_column] = highest_score_label logging.info(f"Row {index}: Predicted - {highest_score_label}") # Predict and log results for each DataFrame predict_and_log(data, 'Predicted', 'processed_text', ['MAX1', 'MAX2', 'MAX3']) predict_and_log(data_open, 'Predicted_F', 'processed_text_open') predict_and_log(data_open, 'Predicted_M', 'processed_text_mopen') # Optionally display a confirmation message st.write("Predictions have been logged. Check your logs for details.")