Spaces:
Sleeping
Sleeping
File size: 2,119 Bytes
1b50b66 895141b 324d859 2ee3ecc c05213f 2ee3ecc 76aff4b 2ee3ecc 1b50b66 e27efab d44d169 1b50b66 76aff4b b4628ad 76aff4b 75a0105 76aff4b 75a0105 76aff4b 75a0105 76aff4b 2ee3ecc 75a0105 324d859 75a0105 2ee3ecc e27efab 75a0105 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import streamlit as st
import pandas as pd
from transformers import pipeline
import re
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
# Download necessary NLTK resources
nltk.download('stopwords')
nltk.download('wordnet')
# Initialize the zero-shot classification pipeline
classifier = pipeline("zero-shot-classification", model="Fralet/personality")
# Streamlit interface setup
st.title("Resume-based Personality Prediction by Serikov Ayanbek")
# Load data from Excel
data = pd.read_excel("your_excel_file.xlsx") # Replace 'your_excel_file.xlsx' with your actual file name
# Preprocess text function
def preprocess_text(text):
text = re.sub(r'\W', ' ', str(text))
text = text.lower()
text is re.sub(r'\s+[a-z]\s+', ' ', text)
text = re.sub(r'^[a-z]\s+', ' ', text)
text = re.sub(r'\s+', ' ', text)
stop_words = set(stopwords.words('english'))
lemmatizer = WordNetLemmatizer()
tokens = text.split()
tokens = [lemmatizer.lemmatize(word) for word in tokens if word not in stop_words]
return ' '.join(tokens)
# Combine relevant text columns for processing
question_columns = [f'Q{i}' for i in range(1, 37)] # Adjust range if needed
data['combined_text'] = data[['CV/Resume'] + question_columns].agg(' '.join, axis=1)
data['processed_text'] = data['combined_text'].apply(preprocess_text)
# Prediction confidence threshold
confidence_threshold = st.slider("Confidence Threshold", 0.0, 1.0, 0.5)
if st.button("Predict Personality"):
# Function to apply predictions using dynamic labels from MAX1, MAX2, MAX3
def get_predictions(row):
custom_labels = [row['MAX1'], row['MAX2'], row['MAX3']] # Get labels from each row
processed_text = row['processed_text']
result = classifier(processed_text, custom_labels)
return [label for label, score in zip(result['labels'], result['scores']) if score >= confidence_threshold]
# Apply predictions across all rows
data['predicted_labels'] = data.apply(get_predictions, axis=1)
st.dataframe(data[['True_label', 'Predicted', 'predicted_labels']])
|