Spaces:
Sleeping
Sleeping
import pandas as pd | |
import streamlit as st | |
import joblib | |
from sklearn.preprocessing import StandardScaler, OneHotEncoder | |
from sklearn.model_selection import train_test_split | |
from sklearn.compose import ColumnTransformer | |
# Veriyi yükleme ve sütun isimlerini güncelleme | |
df = pd.read_csv('train.csv') | |
# Bağımlı ve bağımsız değişkenlerin seçimi | |
x = df.drop(['essay_id', 'text'], axis=1) | |
y = df[['text']] | |
# Eğitim ve test verilerini ayırma | |
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.20, random_state=42) | |
# Ön işleme (StandardScaler ve OneHotEncoder) | |
preprocessor = ColumnTransformer( | |
transformers=[ | |
('num', StandardScaler(), ['feeling']), | |
('cat', OneHotEncoder(), ['text']) | |
] | |
) | |
# Streamlit uygulaması | |
def rings_pred(feeling, text): | |
input_data = pd.DataFrame({ | |
'text': [text], | |
'feeling': [feeling] | |
}) | |
input_data_transformed = preprocessor.fit_transform(input_data) | |
model = joblib.load('Tweet.pkl') | |
prediction = model.predict(input_data_transformed) | |
return float(prediction[0]) | |
st.title("Abalone Veri seti ile Yaş Tahmini Regresyon Modeli") | |
st.write("Veri Gir") | |
text = st.selectbox('text', df['text'].unique()) | |
feeling = st.selectbox('feeling', df['feeling'].unique()) | |
if st.button('Predict'): | |
rings = rings_pred(text,feeling) | |
st.write(f'The predicted rings is: {rings:.2f}') |