ErenKontas commited on
Commit
cadb7ff
·
verified ·
1 Parent(s): 6fc05fa

Upload 6 files

Browse files
Derin Öğrenme Classificion ile Tweet Duygu Analizi - Twitter Sentiment Analysis with Deep Learning Classification.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
Tweet.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:099b4b93265c576c3f5e07746fae41c2951828e911575dc83e0a480c6d0eb739
3
+ size 63270657
app.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import streamlit as st
3
+ import joblib
4
+
5
+ from sklearn.preprocessing import StandardScaler, OneHotEncoder
6
+ from sklearn.model_selection import train_test_split
7
+ from sklearn.compose import ColumnTransformer
8
+
9
+ # Veriyi yükleme ve sütun isimlerini güncelleme
10
+ df = pd.read_csv('train.csv')
11
+
12
+ # Bağımlı ve bağımsız değişkenlerin seçimi
13
+ x = df.drop(['essay_id', 'text'], axis=1)
14
+ y = df[['text']]
15
+
16
+ # Eğitim ve test verilerini ayırma
17
+ x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.20, random_state=42)
18
+
19
+ # Ön işleme (StandardScaler ve OneHotEncoder)
20
+ preprocessor = ColumnTransformer(
21
+ transformers=[
22
+ ('num', StandardScaler(), ['feeling']),
23
+ ('cat', OneHotEncoder(), ['text'])
24
+ ]
25
+ )
26
+
27
+ # Streamlit uygulaması
28
+ def rings_pred(feeling, text):
29
+ input_data = pd.DataFrame({
30
+ 'text': [text],
31
+ 'feeling': [feeling]
32
+
33
+ })
34
+
35
+
36
+ input_data_transformed = preprocessor.fit_transform(input_data)
37
+
38
+ model = joblib.load('Tweet.pkl')
39
+
40
+ prediction = model.predict(input_data_transformed)
41
+ return float(prediction[0])
42
+
43
+ st.title("Abalone Veri seti ile Yaş Tahmini Regresyon Modeli")
44
+ st.write("Veri Gir")
45
+
46
+ text = st.selectbox('text', df['text'].unique())
47
+ feeling = st.selectbox('feeling', df['feeling'].unique())
48
+
49
+
50
+ if st.button('Predict'):
51
+ rings = rings_pred(text,feeling)
52
+ st.write(f'The predicted rings is: {rings:.2f}')
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ streamlit
2
+ scikit-learn
3
+ pandas
4
+ tensorflow
test.csv ADDED
The diff for this file is too large to render. See raw diff
 
train.csv ADDED
The diff for this file is too large to render. See raw diff