Spaces:
Sleeping
Sleeping
File size: 1,471 Bytes
cadb7ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import pandas as pd
import streamlit as st
import joblib
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.model_selection import train_test_split
from sklearn.compose import ColumnTransformer
# Veriyi yükleme ve sütun isimlerini güncelleme
df = pd.read_csv('train.csv')
# Bağımlı ve bağımsız değişkenlerin seçimi
x = df.drop(['essay_id', 'text'], axis=1)
y = df[['text']]
# Eğitim ve test verilerini ayırma
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.20, random_state=42)
# Ön işleme (StandardScaler ve OneHotEncoder)
preprocessor = ColumnTransformer(
transformers=[
('num', StandardScaler(), ['feeling']),
('cat', OneHotEncoder(), ['text'])
]
)
# Streamlit uygulaması
def rings_pred(feeling, text):
input_data = pd.DataFrame({
'text': [text],
'feeling': [feeling]
})
input_data_transformed = preprocessor.fit_transform(input_data)
model = joblib.load('Tweet.pkl')
prediction = model.predict(input_data_transformed)
return float(prediction[0])
st.title("Abalone Veri seti ile Yaş Tahmini Regresyon Modeli")
st.write("Veri Gir")
text = st.selectbox('text', df['text'].unique())
feeling = st.selectbox('feeling', df['feeling'].unique())
if st.button('Predict'):
rings = rings_pred(text,feeling)
st.write(f'The predicted rings is: {rings:.2f}') |