File size: 4,247 Bytes
74129e6
a032ead
 
 
74129e6
a032ead
 
74129e6
a032ead
 
 
 
74129e6
a032ead
a691c88
a032ead
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a691c88
a032ead
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74129e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a032ead
74129e6
a032ead
74129e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import gradio as gr
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM
from aksharamukha import transliterate
import torch

# Set up device
device = "cuda" if torch.cuda.is_available() else "cpu"

# Load translation models and tokenizers
trans_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M").to(device)
eng_trans_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
translator = pipeline('translation', model=trans_model, tokenizer=eng_trans_tokenizer, src_lang="eng_Latn", tgt_lang='sin_Sinh', max_length=400, device=device)

sin_trans_model = AutoModelForSeq2SeqLM.from_pretrained("thilina/mt5-sinhalese-english").to(device)
si_trans_tokenizer = AutoTokenizer.from_pretrained("thilina/mt5-sinhalese-english", use_fast=False)  # Use slow tokenizer

singlish_pipe = pipeline("text2text-generation", model="Dhahlan2000/Simple_Translation-model-for-GPT-v14")

# Translation functions
def translate_Singlish_to_sinhala(text):
    translated_text = singlish_pipe(f"translate Singlish to Sinhala: {text}", clean_up_tokenization_spaces=False)[0]['generated_text']
    return translated_text

def translate_english_to_sinhala(text):
    parts = text.split("\n")
    translated_parts = [translator(part, clean_up_tokenization_spaces=False)[0]['translation_text'] for part in parts]
    return "\n".join(translated_parts).replace("ප් රභූවරුන්", "")

def translate_sinhala_to_english(text):
    parts = text.split("\n")
    translated_parts = []
    for part in parts:
        inputs = si_trans_tokenizer(part.strip(), return_tensors="pt", padding=True, truncation=True, max_length=512).to(device)
        outputs = sin_trans_model.generate(**inputs)
        translated_part = si_trans_tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
        translated_parts.append(translated_part)
    return "\n".join(translated_parts)

def transliterate_from_sinhala(text):
    latin_text = transliterate.process('Sinhala', 'Velthuis', text).replace('.', '').replace('*', '').replace('"', '').lower()
    return latin_text

def transliterate_to_sinhala(text):
    return transliterate.process('Velthuis', 'Sinhala', text)

# Load conversation model
conv_model_name = "gpt2"  # Use GPT-2 instead of the gated model
tokenizer = AutoTokenizer.from_pretrained(conv_model_name)
model = AutoModelForCausalLM.from_pretrained(conv_model_name).to(device)

def conversation_predict(text):
    input_ids = tokenizer(text, return_tensors="pt").to(device)
    outputs = model.generate(**input_ids)
    return tokenizer.decode(outputs[0])

def ai_predicted(user_input):
    if user_input.lower() == 'exit':
        return "Goodbye!"

    user_input = translate_Singlish_to_sinhala(user_input)
    user_input = transliterate_to_sinhala(user_input)
    user_input = translate_sinhala_to_english(user_input)

    ai_response = conversation_predict(user_input)
    ai_response_lines = ai_response.split("</s>")

    response = translate_english_to_sinhala(ai_response_lines[-1])
    response = transliterate_from_sinhala(response)
    return response

# Gradio Interface
def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ai_predicted(message)

    yield response

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)

if __name__ == "__main__":
    demo.launch()