Spaces:
Running
Running
Dhahlan2000
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM
|
4 |
from aksharamukha import transliterate
|
5 |
import torch
|
@@ -13,7 +12,7 @@ eng_trans_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled
|
|
13 |
translator = pipeline('translation', model=trans_model, tokenizer=eng_trans_tokenizer, src_lang="eng_Latn", tgt_lang='sin_Sinh', max_length=400, device=device)
|
14 |
|
15 |
sin_trans_model = AutoModelForSeq2SeqLM.from_pretrained("thilina/mt5-sinhalese-english").to(device)
|
16 |
-
si_trans_tokenizer = AutoTokenizer.from_pretrained("thilina/mt5-sinhalese-english")
|
17 |
|
18 |
singlish_pipe = pipeline("text2text-generation", model="Dhahlan2000/Simple_Translation-model-for-GPT-v14")
|
19 |
|
@@ -45,7 +44,7 @@ def transliterate_to_sinhala(text):
|
|
45 |
return transliterate.process('Velthuis', 'Sinhala', text)
|
46 |
|
47 |
# Load conversation model
|
48 |
-
conv_model_name = "
|
49 |
tokenizer = AutoTokenizer.from_pretrained(conv_model_name)
|
50 |
model = AutoModelForCausalLM.from_pretrained(conv_model_name).to(device)
|
51 |
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM
|
3 |
from aksharamukha import transliterate
|
4 |
import torch
|
|
|
12 |
translator = pipeline('translation', model=trans_model, tokenizer=eng_trans_tokenizer, src_lang="eng_Latn", tgt_lang='sin_Sinh', max_length=400, device=device)
|
13 |
|
14 |
sin_trans_model = AutoModelForSeq2SeqLM.from_pretrained("thilina/mt5-sinhalese-english").to(device)
|
15 |
+
si_trans_tokenizer = AutoTokenizer.from_pretrained("thilina/mt5-sinhalese-english", use_fast=False) # Use slow tokenizer
|
16 |
|
17 |
singlish_pipe = pipeline("text2text-generation", model="Dhahlan2000/Simple_Translation-model-for-GPT-v14")
|
18 |
|
|
|
44 |
return transliterate.process('Velthuis', 'Sinhala', text)
|
45 |
|
46 |
# Load conversation model
|
47 |
+
conv_model_name = "gpt2" # Use GPT-2 instead of the gated model
|
48 |
tokenizer = AutoTokenizer.from_pretrained(conv_model_name)
|
49 |
model = AutoModelForCausalLM.from_pretrained(conv_model_name).to(device)
|
50 |
|