Spaces:
Sleeping
Sleeping
Dhahlan2000
commited on
Commit
•
a032ead
1
Parent(s):
ee6fdd6
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,75 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
|
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def respond(
|
11 |
message,
|
12 |
history: list[tuple[str, str]],
|
@@ -25,23 +88,10 @@ def respond(
|
|
25 |
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
-
response =
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
yield response
|
41 |
|
42 |
-
"""
|
43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
"""
|
45 |
demo = gr.ChatInterface(
|
46 |
respond,
|
47 |
additional_inputs=[
|
@@ -58,6 +108,5 @@ demo = gr.ChatInterface(
|
|
58 |
],
|
59 |
)
|
60 |
|
61 |
-
|
62 |
if __name__ == "__main__":
|
63 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM
|
4 |
+
from aksharamukha import transliterate
|
5 |
+
import torch
|
6 |
|
7 |
+
# Set up device
|
8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
9 |
|
10 |
+
# Load translation models and tokenizers
|
11 |
+
trans_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M").to(device)
|
12 |
+
eng_trans_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
|
13 |
+
translator = pipeline('translation', model=trans_model, tokenizer=eng_trans_tokenizer, src_lang="eng_Latn", tgt_lang='sin_Sinh', max_length=400, device=device)
|
14 |
|
15 |
+
sin_trans_model = AutoModelForSeq2SeqLM.from_pretrained("thilina/mt5-sinhalese-english").to(device)
|
16 |
+
si_trans_tokenizer = AutoTokenizer.from_pretrained("thilina/mt5-sinhalese-english")
|
17 |
+
|
18 |
+
singlish_pipe = pipeline("text2text-generation", model="Dhahlan2000/Simple_Translation-model-for-GPT-v14")
|
19 |
+
|
20 |
+
# Translation functions
|
21 |
+
def translate_Singlish_to_sinhala(text):
|
22 |
+
translated_text = singlish_pipe(f"translate Singlish to Sinhala: {text}", clean_up_tokenization_spaces=False)[0]['generated_text']
|
23 |
+
return translated_text
|
24 |
+
|
25 |
+
def translate_english_to_sinhala(text):
|
26 |
+
parts = text.split("\n")
|
27 |
+
translated_parts = [translator(part, clean_up_tokenization_spaces=False)[0]['translation_text'] for part in parts]
|
28 |
+
return "\n".join(translated_parts).replace("ප් රභූවරුන්", "")
|
29 |
+
|
30 |
+
def translate_sinhala_to_english(text):
|
31 |
+
parts = text.split("\n")
|
32 |
+
translated_parts = []
|
33 |
+
for part in parts:
|
34 |
+
inputs = si_trans_tokenizer(part.strip(), return_tensors="pt", padding=True, truncation=True, max_length=512).to(device)
|
35 |
+
outputs = sin_trans_model.generate(**inputs)
|
36 |
+
translated_part = si_trans_tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
37 |
+
translated_parts.append(translated_part)
|
38 |
+
return "\n".join(translated_parts)
|
39 |
+
|
40 |
+
def transliterate_from_sinhala(text):
|
41 |
+
latin_text = transliterate.process('Sinhala', 'Velthuis', text).replace('.', '').replace('*', '').replace('"', '').lower()
|
42 |
+
return latin_text
|
43 |
+
|
44 |
+
def transliterate_to_sinhala(text):
|
45 |
+
return transliterate.process('Velthuis', 'Sinhala', text)
|
46 |
+
|
47 |
+
# Load conversation model
|
48 |
+
conv_model_name = "google/gemma-7b"
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained(conv_model_name)
|
50 |
+
model = AutoModelForCausalLM.from_pretrained(conv_model_name).to(device)
|
51 |
+
|
52 |
+
def conversation_predict(text):
|
53 |
+
input_ids = tokenizer(text, return_tensors="pt").to(device)
|
54 |
+
outputs = model.generate(**input_ids)
|
55 |
+
return tokenizer.decode(outputs[0])
|
56 |
+
|
57 |
+
def ai_predicted(user_input):
|
58 |
+
if user_input.lower() == 'exit':
|
59 |
+
return "Goodbye!"
|
60 |
+
|
61 |
+
user_input = translate_Singlish_to_sinhala(user_input)
|
62 |
+
user_input = transliterate_to_sinhala(user_input)
|
63 |
+
user_input = translate_sinhala_to_english(user_input)
|
64 |
+
|
65 |
+
ai_response = conversation_predict(user_input)
|
66 |
+
ai_response_lines = ai_response.split("</s>")
|
67 |
+
|
68 |
+
response = translate_english_to_sinhala(ai_response_lines[-1])
|
69 |
+
response = transliterate_from_sinhala(response)
|
70 |
+
return response
|
71 |
+
|
72 |
+
# Gradio Interface
|
73 |
def respond(
|
74 |
message,
|
75 |
history: list[tuple[str, str]],
|
|
|
88 |
|
89 |
messages.append({"role": "user", "content": message})
|
90 |
|
91 |
+
response = ai_predicted(message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
+
yield response
|
|
|
94 |
|
|
|
|
|
|
|
95 |
demo = gr.ChatInterface(
|
96 |
respond,
|
97 |
additional_inputs=[
|
|
|
108 |
],
|
109 |
)
|
110 |
|
|
|
111 |
if __name__ == "__main__":
|
112 |
demo.launch()
|