DexterSptizu's picture
Create app.py
cebb474 verified
import streamlit as st
from langchain_community.document_loaders import PyPDFLoader, TextLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import OpenAIEmbeddings, HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_openai import ChatOpenAI
from langchain_community.chat_models import ChatOllama
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
import tempfile
import os
import time
# Initialize session state
if 'processed_data' not in st.session_state:
st.session_state.processed_data = False
if 'vectorstore' not in st.session_state:
st.session_state.vectorstore = None
if 'retriever' not in st.session_state:
st.session_state.retriever = None
if 'chain' not in st.session_state:
st.session_state.chain = None
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
st.set_page_config(page_title="πŸ€– RAG Explorer", layout="wide")
st.title("πŸ€– Retrieval Augmented Generation Explorer")
st.markdown("""
Explore how RAG works by uploading documents, configuring the pipeline, and asking questions!
""")
# Main tabs
setup_tab, chat_tab, learn_tab = st.tabs(["πŸ› οΈ Setup RAG Pipeline", "πŸ’¬ Chat Interface", "πŸ“š Learning Center"])
with setup_tab:
# Pipeline Configuration Section
st.header("RAG Pipeline Configuration")
# Document Processing
doc_col, process_col = st.columns([1, 1])
with doc_col:
st.subheader("1️⃣ Document Upload")
file_type = st.selectbox("Select File Type", ["PDF", "Text"])
uploaded_file = st.file_uploader(
"Upload your document",
type=["pdf", "txt"],
help="Upload a document to create the knowledge base"
)
if uploaded_file:
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{file_type.lower()}") as tmp_file:
tmp_file.write(uploaded_file.getvalue())
tmp_file_path = tmp_file.name
loader = PyPDFLoader(tmp_file_path) if file_type == "PDF" else TextLoader(tmp_file_path)
documents = loader.load()
st.success("Document loaded successfully!")
# Text splitting configuration
st.subheader("2️⃣ Text Splitting")
chunk_size = st.slider("Chunk Size", 100, 2000, 500)
chunk_overlap = st.slider("Chunk Overlap", 0, 200, 50)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
splits = text_splitter.split_documents(documents)
# Clean up temp file
os.unlink(tmp_file_path)
with st.expander("Preview Text Chunks"):
for i, chunk in enumerate(splits[:3]):
st.markdown(f"**Chunk {i+1}**")
st.write(chunk.page_content)
st.markdown("---")
st.session_state.splits = splits
except Exception as e:
st.error(f"Error processing document: {str(e)}")
with process_col:
st.subheader("3️⃣ Embedding Configuration")
embedding_type = st.selectbox(
"Select Embeddings",
["OpenAI", "HuggingFace"],
help="Choose the embedding model"
)
if embedding_type == "OpenAI":
api_key = st.text_input("OpenAI API Key", type="password")
if api_key:
os.environ["OPENAI_API_KEY"] = api_key
embeddings = OpenAIEmbeddings()
else:
model_name = st.selectbox(
"Select HuggingFace Model",
["sentence-transformers/all-mpnet-base-v2",
"sentence-transformers/all-MiniLM-L6-v2"]
)
embeddings = HuggingFaceEmbeddings(model_name=model_name)
st.subheader("4️⃣ LLM Configuration")
llm_type = st.selectbox(
"Select Language Model",
["OpenAI", "Ollama"],
help="Choose the Large Language Model"
)
if llm_type == "OpenAI":
model_name = st.selectbox("Select Model", ["gpt-3.5-turbo", "gpt-4"])
temperature = st.slider("Temperature", 0.0, 1.0, 0.7)
if api_key:
llm = ChatOpenAI(model_name=model_name, temperature=temperature)
else:
model_name = st.selectbox("Select Model", ["llama2", "mistral"])
temperature = st.slider("Temperature", 0.0, 1.0, 0.7)
llm = ChatOllama(model=model_name, temperature=temperature)
if 'splits' in st.session_state:
if st.button("Create RAG Pipeline"):
with st.spinner("Creating vector store and RAG pipeline..."):
# Create vector store
vectorstore = FAISS.from_documents(
st.session_state.splits,
embeddings
)
retriever = vectorstore.as_retriever(
search_type="similarity",
search_kwargs={"k": 3}
)
# Create RAG chain
template = """Use the following pieces of context to answer the question at the end.
If you don't know the answer, just say that you don't know, don't try to make up an answer.
{context}
Question: {question}
Answer: """
QA_CHAIN_PROMPT = PromptTemplate(
input_variables=["context", "question"],
template=template,
)
chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
chain_type_kwargs={"prompt": QA_CHAIN_PROMPT}
)
st.session_state.chain = chain
st.session_state.processed_data = True
st.success("RAG pipeline created successfully!")
with chat_tab:
st.header("Chat with your Documents")
if not st.session_state.processed_data:
st.warning("Please set up the RAG pipeline first in the Setup tab!")
else:
# Chat interface
st.markdown("### Ask questions about your documents")
# Query input
query = st.text_input("Enter your question:")
if query:
with st.spinner("Generating response..."):
try:
response = st.session_state.chain.invoke(query)
# Add to chat history
st.session_state.chat_history.append(("user", query))
st.session_state.chat_history.append(("assistant", response['result']))
except Exception as e:
st.error(f"Error generating response: {str(e)}")
# Display chat history
st.markdown("### Chat History")
for role, message in st.session_state.chat_history:
if role == "user":
st.markdown(f"**You:** {message}")
else:
st.markdown(f"**Assistant:** {message}")
st.markdown("---")
with learn_tab:
concept_tab, architecture_tab, tips_tab = st.tabs(["Core Concepts", "RAG Architecture", "Best Practices"])
with concept_tab:
st.markdown("""
### What is RAG?
Retrieval Augmented Generation (RAG) is a technique that enhances Large Language Models by:
1. Retrieving relevant information from a knowledge base
2. Augmenting the prompt with this information
3. Generating responses based on both the question and retrieved context
### Key Components
1. **Document Loader**
- Imports documents into the system
- Supports various file formats
2. **Text Splitter**
- Breaks documents into manageable chunks
- Maintains context while splitting
3. **Embeddings**
- Converts text into vector representations
- Enables semantic search
4. **Vector Store**
- Stores and indexes embeddings
- Enables efficient retrieval
5. **Language Model**
- Generates responses using retrieved context
- Ensures accurate and relevant answers
""")
with architecture_tab:
st.markdown("""
### RAG Pipeline Architecture
```mermaid
graph LR
A[Document] --> B[Text Splitter]
B --> C[Embeddings]
C --> D[Vector Store]
E[Query] --> F[Embedding]
F --> G[Retriever]
D --> G
G --> H[Context]
H --> I[LLM]
E --> I
I --> J[Response]
```
### Data Flow
1. **Document Processing**
- Document β†’ Chunks β†’ Embeddings β†’ Vector Store
2. **Query Processing**
- Query β†’ Embedding β†’ Similarity Search β†’ Retrieved Context
3. **Response Generation**
- Context + Query β†’ LLM β†’ Generated Response
""")
with tips_tab:
st.markdown("""
### RAG Best Practices
1. **Document Processing**
- Choose appropriate chunk sizes
- Ensure sufficient chunk overlap
- Maintain document metadata
2. **Retrieval Strategy**
- Tune the number of retrieved chunks
- Consider hybrid search approaches
- Implement relevance filtering
3. **Prompt Engineering**
- Design clear and specific prompts
- Include system instructions
- Handle edge cases gracefully
4. **Performance Optimization**
- Cache frequent queries
- Batch process documents
- Monitor resource usage
5. **Quality Control**
- Implement answer validation
- Track retrieval quality
- Monitor LLM output
""")
# Sidebar
st.sidebar.header("πŸ“‹ Quick Guide")
st.sidebar.markdown("""
1. **Setup Pipeline**
- Upload document
- Configure text splitting
- Set up embeddings
- Choose LLM
2. **Ask Questions**
- Switch to Chat tab
- Enter your question
- Review responses
3. **Learn More**
- Explore concepts
- Understand architecture
- Review best practices
""")
# Footer
st.sidebar.markdown("---")
st.sidebar.markdown("Made with ❀️ using LangChain 0.3")