DexterSptizu
commited on
Commit
β’
cebb474
1
Parent(s):
24b7df8
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,311 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from langchain_community.document_loaders import PyPDFLoader, TextLoader
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from langchain_community.embeddings import OpenAIEmbeddings, HuggingFaceEmbeddings
|
5 |
+
from langchain_community.vectorstores import FAISS
|
6 |
+
from langchain_openai import ChatOpenAI
|
7 |
+
from langchain_community.chat_models import ChatOllama
|
8 |
+
from langchain.chains import RetrievalQA
|
9 |
+
from langchain.prompts import PromptTemplate
|
10 |
+
import tempfile
|
11 |
+
import os
|
12 |
+
import time
|
13 |
+
|
14 |
+
# Initialize session state
|
15 |
+
if 'processed_data' not in st.session_state:
|
16 |
+
st.session_state.processed_data = False
|
17 |
+
if 'vectorstore' not in st.session_state:
|
18 |
+
st.session_state.vectorstore = None
|
19 |
+
if 'retriever' not in st.session_state:
|
20 |
+
st.session_state.retriever = None
|
21 |
+
if 'chain' not in st.session_state:
|
22 |
+
st.session_state.chain = None
|
23 |
+
if 'chat_history' not in st.session_state:
|
24 |
+
st.session_state.chat_history = []
|
25 |
+
|
26 |
+
st.set_page_config(page_title="π€ RAG Explorer", layout="wide")
|
27 |
+
st.title("π€ Retrieval Augmented Generation Explorer")
|
28 |
+
st.markdown("""
|
29 |
+
Explore how RAG works by uploading documents, configuring the pipeline, and asking questions!
|
30 |
+
""")
|
31 |
+
|
32 |
+
# Main tabs
|
33 |
+
setup_tab, chat_tab, learn_tab = st.tabs(["π οΈ Setup RAG Pipeline", "π¬ Chat Interface", "π Learning Center"])
|
34 |
+
|
35 |
+
with setup_tab:
|
36 |
+
# Pipeline Configuration Section
|
37 |
+
st.header("RAG Pipeline Configuration")
|
38 |
+
|
39 |
+
# Document Processing
|
40 |
+
doc_col, process_col = st.columns([1, 1])
|
41 |
+
|
42 |
+
with doc_col:
|
43 |
+
st.subheader("1οΈβ£ Document Upload")
|
44 |
+
file_type = st.selectbox("Select File Type", ["PDF", "Text"])
|
45 |
+
uploaded_file = st.file_uploader(
|
46 |
+
"Upload your document",
|
47 |
+
type=["pdf", "txt"],
|
48 |
+
help="Upload a document to create the knowledge base"
|
49 |
+
)
|
50 |
+
|
51 |
+
if uploaded_file:
|
52 |
+
try:
|
53 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{file_type.lower()}") as tmp_file:
|
54 |
+
tmp_file.write(uploaded_file.getvalue())
|
55 |
+
tmp_file_path = tmp_file.name
|
56 |
+
|
57 |
+
loader = PyPDFLoader(tmp_file_path) if file_type == "PDF" else TextLoader(tmp_file_path)
|
58 |
+
documents = loader.load()
|
59 |
+
st.success("Document loaded successfully!")
|
60 |
+
|
61 |
+
# Text splitting configuration
|
62 |
+
st.subheader("2οΈβ£ Text Splitting")
|
63 |
+
chunk_size = st.slider("Chunk Size", 100, 2000, 500)
|
64 |
+
chunk_overlap = st.slider("Chunk Overlap", 0, 200, 50)
|
65 |
+
|
66 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
67 |
+
chunk_size=chunk_size,
|
68 |
+
chunk_overlap=chunk_overlap
|
69 |
+
)
|
70 |
+
splits = text_splitter.split_documents(documents)
|
71 |
+
|
72 |
+
# Clean up temp file
|
73 |
+
os.unlink(tmp_file_path)
|
74 |
+
|
75 |
+
with st.expander("Preview Text Chunks"):
|
76 |
+
for i, chunk in enumerate(splits[:3]):
|
77 |
+
st.markdown(f"**Chunk {i+1}**")
|
78 |
+
st.write(chunk.page_content)
|
79 |
+
st.markdown("---")
|
80 |
+
|
81 |
+
st.session_state.splits = splits
|
82 |
+
|
83 |
+
except Exception as e:
|
84 |
+
st.error(f"Error processing document: {str(e)}")
|
85 |
+
|
86 |
+
with process_col:
|
87 |
+
st.subheader("3οΈβ£ Embedding Configuration")
|
88 |
+
embedding_type = st.selectbox(
|
89 |
+
"Select Embeddings",
|
90 |
+
["OpenAI", "HuggingFace"],
|
91 |
+
help="Choose the embedding model"
|
92 |
+
)
|
93 |
+
|
94 |
+
if embedding_type == "OpenAI":
|
95 |
+
api_key = st.text_input("OpenAI API Key", type="password")
|
96 |
+
if api_key:
|
97 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
98 |
+
embeddings = OpenAIEmbeddings()
|
99 |
+
else:
|
100 |
+
model_name = st.selectbox(
|
101 |
+
"Select HuggingFace Model",
|
102 |
+
["sentence-transformers/all-mpnet-base-v2",
|
103 |
+
"sentence-transformers/all-MiniLM-L6-v2"]
|
104 |
+
)
|
105 |
+
embeddings = HuggingFaceEmbeddings(model_name=model_name)
|
106 |
+
|
107 |
+
st.subheader("4οΈβ£ LLM Configuration")
|
108 |
+
llm_type = st.selectbox(
|
109 |
+
"Select Language Model",
|
110 |
+
["OpenAI", "Ollama"],
|
111 |
+
help="Choose the Large Language Model"
|
112 |
+
)
|
113 |
+
|
114 |
+
if llm_type == "OpenAI":
|
115 |
+
model_name = st.selectbox("Select Model", ["gpt-3.5-turbo", "gpt-4"])
|
116 |
+
temperature = st.slider("Temperature", 0.0, 1.0, 0.7)
|
117 |
+
if api_key:
|
118 |
+
llm = ChatOpenAI(model_name=model_name, temperature=temperature)
|
119 |
+
else:
|
120 |
+
model_name = st.selectbox("Select Model", ["llama2", "mistral"])
|
121 |
+
temperature = st.slider("Temperature", 0.0, 1.0, 0.7)
|
122 |
+
llm = ChatOllama(model=model_name, temperature=temperature)
|
123 |
+
|
124 |
+
if 'splits' in st.session_state:
|
125 |
+
if st.button("Create RAG Pipeline"):
|
126 |
+
with st.spinner("Creating vector store and RAG pipeline..."):
|
127 |
+
# Create vector store
|
128 |
+
vectorstore = FAISS.from_documents(
|
129 |
+
st.session_state.splits,
|
130 |
+
embeddings
|
131 |
+
)
|
132 |
+
retriever = vectorstore.as_retriever(
|
133 |
+
search_type="similarity",
|
134 |
+
search_kwargs={"k": 3}
|
135 |
+
)
|
136 |
+
|
137 |
+
# Create RAG chain
|
138 |
+
template = """Use the following pieces of context to answer the question at the end.
|
139 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
140 |
+
|
141 |
+
{context}
|
142 |
+
|
143 |
+
Question: {question}
|
144 |
+
Answer: """
|
145 |
+
|
146 |
+
QA_CHAIN_PROMPT = PromptTemplate(
|
147 |
+
input_variables=["context", "question"],
|
148 |
+
template=template,
|
149 |
+
)
|
150 |
+
|
151 |
+
chain = RetrievalQA.from_chain_type(
|
152 |
+
llm=llm,
|
153 |
+
chain_type="stuff",
|
154 |
+
retriever=retriever,
|
155 |
+
chain_type_kwargs={"prompt": QA_CHAIN_PROMPT}
|
156 |
+
)
|
157 |
+
|
158 |
+
st.session_state.chain = chain
|
159 |
+
st.session_state.processed_data = True
|
160 |
+
st.success("RAG pipeline created successfully!")
|
161 |
+
|
162 |
+
with chat_tab:
|
163 |
+
st.header("Chat with your Documents")
|
164 |
+
|
165 |
+
if not st.session_state.processed_data:
|
166 |
+
st.warning("Please set up the RAG pipeline first in the Setup tab!")
|
167 |
+
else:
|
168 |
+
# Chat interface
|
169 |
+
st.markdown("### Ask questions about your documents")
|
170 |
+
|
171 |
+
# Query input
|
172 |
+
query = st.text_input("Enter your question:")
|
173 |
+
|
174 |
+
if query:
|
175 |
+
with st.spinner("Generating response..."):
|
176 |
+
try:
|
177 |
+
response = st.session_state.chain.invoke(query)
|
178 |
+
|
179 |
+
# Add to chat history
|
180 |
+
st.session_state.chat_history.append(("user", query))
|
181 |
+
st.session_state.chat_history.append(("assistant", response['result']))
|
182 |
+
except Exception as e:
|
183 |
+
st.error(f"Error generating response: {str(e)}")
|
184 |
+
|
185 |
+
# Display chat history
|
186 |
+
st.markdown("### Chat History")
|
187 |
+
for role, message in st.session_state.chat_history:
|
188 |
+
if role == "user":
|
189 |
+
st.markdown(f"**You:** {message}")
|
190 |
+
else:
|
191 |
+
st.markdown(f"**Assistant:** {message}")
|
192 |
+
st.markdown("---")
|
193 |
+
|
194 |
+
with learn_tab:
|
195 |
+
concept_tab, architecture_tab, tips_tab = st.tabs(["Core Concepts", "RAG Architecture", "Best Practices"])
|
196 |
+
|
197 |
+
with concept_tab:
|
198 |
+
st.markdown("""
|
199 |
+
### What is RAG?
|
200 |
+
|
201 |
+
Retrieval Augmented Generation (RAG) is a technique that enhances Large Language Models by:
|
202 |
+
1. Retrieving relevant information from a knowledge base
|
203 |
+
2. Augmenting the prompt with this information
|
204 |
+
3. Generating responses based on both the question and retrieved context
|
205 |
+
|
206 |
+
### Key Components
|
207 |
+
|
208 |
+
1. **Document Loader**
|
209 |
+
- Imports documents into the system
|
210 |
+
- Supports various file formats
|
211 |
+
|
212 |
+
2. **Text Splitter**
|
213 |
+
- Breaks documents into manageable chunks
|
214 |
+
- Maintains context while splitting
|
215 |
+
|
216 |
+
3. **Embeddings**
|
217 |
+
- Converts text into vector representations
|
218 |
+
- Enables semantic search
|
219 |
+
|
220 |
+
4. **Vector Store**
|
221 |
+
- Stores and indexes embeddings
|
222 |
+
- Enables efficient retrieval
|
223 |
+
|
224 |
+
5. **Language Model**
|
225 |
+
- Generates responses using retrieved context
|
226 |
+
- Ensures accurate and relevant answers
|
227 |
+
""")
|
228 |
+
|
229 |
+
with architecture_tab:
|
230 |
+
st.markdown("""
|
231 |
+
### RAG Pipeline Architecture
|
232 |
+
|
233 |
+
```mermaid
|
234 |
+
graph LR
|
235 |
+
A[Document] --> B[Text Splitter]
|
236 |
+
B --> C[Embeddings]
|
237 |
+
C --> D[Vector Store]
|
238 |
+
E[Query] --> F[Embedding]
|
239 |
+
F --> G[Retriever]
|
240 |
+
D --> G
|
241 |
+
G --> H[Context]
|
242 |
+
H --> I[LLM]
|
243 |
+
E --> I
|
244 |
+
I --> J[Response]
|
245 |
+
```
|
246 |
+
|
247 |
+
### Data Flow
|
248 |
+
|
249 |
+
1. **Document Processing**
|
250 |
+
- Document β Chunks β Embeddings β Vector Store
|
251 |
+
|
252 |
+
2. **Query Processing**
|
253 |
+
- Query β Embedding β Similarity Search β Retrieved Context
|
254 |
+
|
255 |
+
3. **Response Generation**
|
256 |
+
- Context + Query β LLM β Generated Response
|
257 |
+
""")
|
258 |
+
|
259 |
+
with tips_tab:
|
260 |
+
st.markdown("""
|
261 |
+
### RAG Best Practices
|
262 |
+
|
263 |
+
1. **Document Processing**
|
264 |
+
- Choose appropriate chunk sizes
|
265 |
+
- Ensure sufficient chunk overlap
|
266 |
+
- Maintain document metadata
|
267 |
+
|
268 |
+
2. **Retrieval Strategy**
|
269 |
+
- Tune the number of retrieved chunks
|
270 |
+
- Consider hybrid search approaches
|
271 |
+
- Implement relevance filtering
|
272 |
+
|
273 |
+
3. **Prompt Engineering**
|
274 |
+
- Design clear and specific prompts
|
275 |
+
- Include system instructions
|
276 |
+
- Handle edge cases gracefully
|
277 |
+
|
278 |
+
4. **Performance Optimization**
|
279 |
+
- Cache frequent queries
|
280 |
+
- Batch process documents
|
281 |
+
- Monitor resource usage
|
282 |
+
|
283 |
+
5. **Quality Control**
|
284 |
+
- Implement answer validation
|
285 |
+
- Track retrieval quality
|
286 |
+
- Monitor LLM output
|
287 |
+
""")
|
288 |
+
|
289 |
+
# Sidebar
|
290 |
+
st.sidebar.header("π Quick Guide")
|
291 |
+
st.sidebar.markdown("""
|
292 |
+
1. **Setup Pipeline**
|
293 |
+
- Upload document
|
294 |
+
- Configure text splitting
|
295 |
+
- Set up embeddings
|
296 |
+
- Choose LLM
|
297 |
+
|
298 |
+
2. **Ask Questions**
|
299 |
+
- Switch to Chat tab
|
300 |
+
- Enter your question
|
301 |
+
- Review responses
|
302 |
+
|
303 |
+
3. **Learn More**
|
304 |
+
- Explore concepts
|
305 |
+
- Understand architecture
|
306 |
+
- Review best practices
|
307 |
+
""")
|
308 |
+
|
309 |
+
# Footer
|
310 |
+
st.sidebar.markdown("---")
|
311 |
+
st.sidebar.markdown("Made with β€οΈ using LangChain 0.3")
|