File size: 11,284 Bytes
cebb474 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import streamlit as st
from langchain_community.document_loaders import PyPDFLoader, TextLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import OpenAIEmbeddings, HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_openai import ChatOpenAI
from langchain_community.chat_models import ChatOllama
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
import tempfile
import os
import time
# Initialize session state
if 'processed_data' not in st.session_state:
st.session_state.processed_data = False
if 'vectorstore' not in st.session_state:
st.session_state.vectorstore = None
if 'retriever' not in st.session_state:
st.session_state.retriever = None
if 'chain' not in st.session_state:
st.session_state.chain = None
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
st.set_page_config(page_title="π€ RAG Explorer", layout="wide")
st.title("π€ Retrieval Augmented Generation Explorer")
st.markdown("""
Explore how RAG works by uploading documents, configuring the pipeline, and asking questions!
""")
# Main tabs
setup_tab, chat_tab, learn_tab = st.tabs(["π οΈ Setup RAG Pipeline", "π¬ Chat Interface", "π Learning Center"])
with setup_tab:
# Pipeline Configuration Section
st.header("RAG Pipeline Configuration")
# Document Processing
doc_col, process_col = st.columns([1, 1])
with doc_col:
st.subheader("1οΈβ£ Document Upload")
file_type = st.selectbox("Select File Type", ["PDF", "Text"])
uploaded_file = st.file_uploader(
"Upload your document",
type=["pdf", "txt"],
help="Upload a document to create the knowledge base"
)
if uploaded_file:
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{file_type.lower()}") as tmp_file:
tmp_file.write(uploaded_file.getvalue())
tmp_file_path = tmp_file.name
loader = PyPDFLoader(tmp_file_path) if file_type == "PDF" else TextLoader(tmp_file_path)
documents = loader.load()
st.success("Document loaded successfully!")
# Text splitting configuration
st.subheader("2οΈβ£ Text Splitting")
chunk_size = st.slider("Chunk Size", 100, 2000, 500)
chunk_overlap = st.slider("Chunk Overlap", 0, 200, 50)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
splits = text_splitter.split_documents(documents)
# Clean up temp file
os.unlink(tmp_file_path)
with st.expander("Preview Text Chunks"):
for i, chunk in enumerate(splits[:3]):
st.markdown(f"**Chunk {i+1}**")
st.write(chunk.page_content)
st.markdown("---")
st.session_state.splits = splits
except Exception as e:
st.error(f"Error processing document: {str(e)}")
with process_col:
st.subheader("3οΈβ£ Embedding Configuration")
embedding_type = st.selectbox(
"Select Embeddings",
["OpenAI", "HuggingFace"],
help="Choose the embedding model"
)
if embedding_type == "OpenAI":
api_key = st.text_input("OpenAI API Key", type="password")
if api_key:
os.environ["OPENAI_API_KEY"] = api_key
embeddings = OpenAIEmbeddings()
else:
model_name = st.selectbox(
"Select HuggingFace Model",
["sentence-transformers/all-mpnet-base-v2",
"sentence-transformers/all-MiniLM-L6-v2"]
)
embeddings = HuggingFaceEmbeddings(model_name=model_name)
st.subheader("4οΈβ£ LLM Configuration")
llm_type = st.selectbox(
"Select Language Model",
["OpenAI", "Ollama"],
help="Choose the Large Language Model"
)
if llm_type == "OpenAI":
model_name = st.selectbox("Select Model", ["gpt-3.5-turbo", "gpt-4"])
temperature = st.slider("Temperature", 0.0, 1.0, 0.7)
if api_key:
llm = ChatOpenAI(model_name=model_name, temperature=temperature)
else:
model_name = st.selectbox("Select Model", ["llama2", "mistral"])
temperature = st.slider("Temperature", 0.0, 1.0, 0.7)
llm = ChatOllama(model=model_name, temperature=temperature)
if 'splits' in st.session_state:
if st.button("Create RAG Pipeline"):
with st.spinner("Creating vector store and RAG pipeline..."):
# Create vector store
vectorstore = FAISS.from_documents(
st.session_state.splits,
embeddings
)
retriever = vectorstore.as_retriever(
search_type="similarity",
search_kwargs={"k": 3}
)
# Create RAG chain
template = """Use the following pieces of context to answer the question at the end.
If you don't know the answer, just say that you don't know, don't try to make up an answer.
{context}
Question: {question}
Answer: """
QA_CHAIN_PROMPT = PromptTemplate(
input_variables=["context", "question"],
template=template,
)
chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
chain_type_kwargs={"prompt": QA_CHAIN_PROMPT}
)
st.session_state.chain = chain
st.session_state.processed_data = True
st.success("RAG pipeline created successfully!")
with chat_tab:
st.header("Chat with your Documents")
if not st.session_state.processed_data:
st.warning("Please set up the RAG pipeline first in the Setup tab!")
else:
# Chat interface
st.markdown("### Ask questions about your documents")
# Query input
query = st.text_input("Enter your question:")
if query:
with st.spinner("Generating response..."):
try:
response = st.session_state.chain.invoke(query)
# Add to chat history
st.session_state.chat_history.append(("user", query))
st.session_state.chat_history.append(("assistant", response['result']))
except Exception as e:
st.error(f"Error generating response: {str(e)}")
# Display chat history
st.markdown("### Chat History")
for role, message in st.session_state.chat_history:
if role == "user":
st.markdown(f"**You:** {message}")
else:
st.markdown(f"**Assistant:** {message}")
st.markdown("---")
with learn_tab:
concept_tab, architecture_tab, tips_tab = st.tabs(["Core Concepts", "RAG Architecture", "Best Practices"])
with concept_tab:
st.markdown("""
### What is RAG?
Retrieval Augmented Generation (RAG) is a technique that enhances Large Language Models by:
1. Retrieving relevant information from a knowledge base
2. Augmenting the prompt with this information
3. Generating responses based on both the question and retrieved context
### Key Components
1. **Document Loader**
- Imports documents into the system
- Supports various file formats
2. **Text Splitter**
- Breaks documents into manageable chunks
- Maintains context while splitting
3. **Embeddings**
- Converts text into vector representations
- Enables semantic search
4. **Vector Store**
- Stores and indexes embeddings
- Enables efficient retrieval
5. **Language Model**
- Generates responses using retrieved context
- Ensures accurate and relevant answers
""")
with architecture_tab:
st.markdown("""
### RAG Pipeline Architecture
```mermaid
graph LR
A[Document] --> B[Text Splitter]
B --> C[Embeddings]
C --> D[Vector Store]
E[Query] --> F[Embedding]
F --> G[Retriever]
D --> G
G --> H[Context]
H --> I[LLM]
E --> I
I --> J[Response]
```
### Data Flow
1. **Document Processing**
- Document β Chunks β Embeddings β Vector Store
2. **Query Processing**
- Query β Embedding β Similarity Search β Retrieved Context
3. **Response Generation**
- Context + Query β LLM β Generated Response
""")
with tips_tab:
st.markdown("""
### RAG Best Practices
1. **Document Processing**
- Choose appropriate chunk sizes
- Ensure sufficient chunk overlap
- Maintain document metadata
2. **Retrieval Strategy**
- Tune the number of retrieved chunks
- Consider hybrid search approaches
- Implement relevance filtering
3. **Prompt Engineering**
- Design clear and specific prompts
- Include system instructions
- Handle edge cases gracefully
4. **Performance Optimization**
- Cache frequent queries
- Batch process documents
- Monitor resource usage
5. **Quality Control**
- Implement answer validation
- Track retrieval quality
- Monitor LLM output
""")
# Sidebar
st.sidebar.header("π Quick Guide")
st.sidebar.markdown("""
1. **Setup Pipeline**
- Upload document
- Configure text splitting
- Set up embeddings
- Choose LLM
2. **Ask Questions**
- Switch to Chat tab
- Enter your question
- Review responses
3. **Learn More**
- Explore concepts
- Understand architecture
- Review best practices
""")
# Footer
st.sidebar.markdown("---")
st.sidebar.markdown("Made with β€οΈ using LangChain 0.3") |