ChenWu98's picture
Update cac support
3e4185b
raw
history blame
17.7 kB
from diffusers import CycleDiffusionPipeline, DDIMScheduler
import gradio as gr
import torch
from PIL import Image
import utils
import streamlit as st
import ptp_utils
import seq_aligner
import torch.nn.functional as nnf
from typing import Optional, Union, Tuple, List, Callable, Dict
import abc
LOW_RESOURCE = False
MAX_NUM_WORDS = 77
is_colab = utils.is_google_colab()
if True:
model_id_or_path = "CompVis/stable-diffusion-v1-4"
scheduler = DDIMScheduler.from_config(model_id_or_path,
use_auth_token=st.secrets["USER_TOKEN"],
subfolder="scheduler")
pipe = CycleDiffusionPipeline.from_pretrained(model_id_or_path,
use_auth_token=st.secrets["USER_TOKEN"],
scheduler=scheduler)
tokenizer = pipe.tokenizer
if torch.cuda.is_available():
pipe = pipe.to("cuda")
device_print = "GPU πŸ”₯" if torch.cuda.is_available() else "CPU πŸ₯Ά"
device = "cuda" if torch.cuda.is_available() else "cpu"
class LocalBlend:
def __call__(self, x_t, attention_store):
k = 1
maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3]
maps = [item.reshape(self.alpha_layers.shape[0], -1, 1, 16, 16, MAX_NUM_WORDS) for item in maps]
maps = torch.cat(maps, dim=1)
maps = (maps * self.alpha_layers).sum(-1).mean(1)
mask = nnf.max_pool2d(maps, (k * 2 + 1, k * 2 + 1), (1, 1), padding=(k, k))
mask = nnf.interpolate(mask, size=(x_t.shape[2:]))
mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0]
mask = mask.gt(self.threshold)
mask = (mask[:1] + mask[1:]).float()
x_t = x_t[:1] + mask * (x_t - x_t[:1])
return x_t
def __init__(self, prompts: List[str], words: [List[List[str]]], threshold=.3):
alpha_layers = torch.zeros(len(prompts), 1, 1, 1, 1, MAX_NUM_WORDS)
for i, (prompt, words_) in enumerate(zip(prompts, words)):
if type(words_) is str:
words_ = [words_]
for word in words_:
ind = ptp_utils.get_word_inds(prompt, word, tokenizer)
alpha_layers[i, :, :, :, :, ind] = 1
self.alpha_layers = alpha_layers.to(device)
self.threshold = threshold
class AttentionControl(abc.ABC):
def step_callback(self, x_t):
return x_t
def between_steps(self):
return
@property
def num_uncond_att_layers(self):
return self.num_att_layers if LOW_RESOURCE else 0
@abc.abstractmethod
def forward(self, attn, is_cross: bool, place_in_unet: str):
raise NotImplementedError
def __call__(self, attn, is_cross: bool, place_in_unet: str):
if self.cur_att_layer >= self.num_uncond_att_layers:
if LOW_RESOURCE:
attn = self.forward(attn, is_cross, place_in_unet)
else:
h = attn.shape[0]
attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet)
self.cur_att_layer += 1
if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers:
self.cur_att_layer = 0
self.cur_step += 1
self.between_steps()
return attn
def reset(self):
self.cur_step = 0
self.cur_att_layer = 0
def __init__(self):
self.cur_step = 0
self.num_att_layers = -1
self.cur_att_layer = 0
class EmptyControl(AttentionControl):
def forward(self, attn, is_cross: bool, place_in_unet: str):
return attn
class AttentionStore(AttentionControl):
@staticmethod
def get_empty_store():
return {"down_cross": [], "mid_cross": [], "up_cross": [],
"down_self": [], "mid_self": [], "up_self": []}
def forward(self, attn, is_cross: bool, place_in_unet: str):
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
if attn.shape[1] <= 32 ** 2: # avoid memory overhead
self.step_store[key].append(attn)
return attn
def between_steps(self):
if len(self.attention_store) == 0:
self.attention_store = self.step_store
else:
for key in self.attention_store:
for i in range(len(self.attention_store[key])):
self.attention_store[key][i] += self.step_store[key][i]
self.step_store = self.get_empty_store()
def get_average_attention(self):
average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store}
return average_attention
def reset(self):
super(AttentionStore, self).reset()
self.step_store = self.get_empty_store()
self.attention_store = {}
def __init__(self):
super(AttentionStore, self).__init__()
self.step_store = self.get_empty_store()
self.attention_store = {}
class AttentionControlEdit(AttentionStore, abc.ABC):
def step_callback(self, x_t):
if self.local_blend is not None:
x_t = self.local_blend(x_t, self.attention_store)
return x_t
def replace_self_attention(self, attn_base, att_replace):
if att_replace.shape[2] <= 16 ** 2:
return attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape)
else:
return att_replace
@abc.abstractmethod
def replace_cross_attention(self, attn_base, att_replace):
raise NotImplementedError
def forward(self, attn, is_cross: bool, place_in_unet: str):
super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet)
if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]):
h = attn.shape[0] // self.batch_size
attn = attn.reshape(self.batch_size, h, *attn.shape[1:])
attn_base, attn_repalce = attn[0], attn[1:]
if is_cross:
alpha_words = self.cross_replace_alpha[self.cur_step]
attn_replace_new = self.replace_cross_attention(attn_base, attn_repalce) * alpha_words + (1 - alpha_words) * attn_repalce
attn[1:] = attn_replace_new
else:
attn[1:] = self.replace_self_attention(attn_base, attn_repalce)
attn = attn.reshape(self.batch_size * h, *attn.shape[2:])
return attn
def __init__(self, prompts, num_steps: int,
cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]],
self_replace_steps: Union[float, Tuple[float, float]],
local_blend: Optional[LocalBlend]):
super(AttentionControlEdit, self).__init__()
self.batch_size = len(prompts)
self.cross_replace_alpha = ptp_utils.get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps, tokenizer).to(device)
if type(self_replace_steps) is float:
self_replace_steps = 0, self_replace_steps
self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1])
self.local_blend = local_blend
class AttentionReplace(AttentionControlEdit):
def replace_cross_attention(self, attn_base, att_replace):
return torch.einsum('hpw,bwn->bhpn', attn_base, self.mapper)
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float,
local_blend: Optional[LocalBlend] = None):
super(AttentionReplace, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
self.mapper = seq_aligner.get_replacement_mapper(prompts, tokenizer).to(device)
class AttentionRefine(AttentionControlEdit):
def replace_cross_attention(self, attn_base, att_replace):
attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3)
attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas)
return attn_replace
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float,
local_blend: Optional[LocalBlend] = None):
super(AttentionRefine, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
self.mapper, alphas = seq_aligner.get_refinement_mapper(prompts, tokenizer)
self.mapper, alphas = self.mapper.to(device), alphas.to(device)
self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1])
def get_equalizer(text: str, word_select: Union[int, Tuple[int, ...]], values: Union[List[float], Tuple[float, ...]]):
if type(word_select) is int or type(word_select) is str:
word_select = (word_select,)
equalizer = torch.ones(len(values), 77)
values = torch.tensor(values, dtype=torch.float32)
for word in word_select:
inds = ptp_utils.get_word_inds(text, word, tokenizer)
equalizer[:, inds] = values
return equalizer
def inference(source_prompt, target_prompt, source_guidance_scale=1, guidance_scale=5, num_inference_steps=100,
width=512, height=512, seed=0, img=None, strength=0.7,
cross_attention_control=None, cross_replace_steps=0.8, self_replace_steps=0.4):
torch.manual_seed(seed)
ratio = min(height / img.height, width / img.width)
img = img.resize((int(img.width * ratio), int(img.height * ratio)))
# create the CAC controller.
if cross_attention_control == "replace":
controller = AttentionReplace([source_prompt, target_prompt],
num_inference_steps,
cross_replace_steps=cross_replace_steps,
self_replace_steps=self_replace_steps,
)
ptp_utils.register_attention_control(pipe, controller)
elif cross_attention_control == "refine":
controller = AttentionRefine([source_prompt, target_prompt],
num_inference_steps,
cross_replace_steps=cross_replace_steps,
self_replace_steps=self_replace_steps,
)
ptp_utils.register_attention_control(pipe, controller)
results = pipe(prompt=target_prompt,
source_prompt=source_prompt,
init_image=img,
num_inference_steps=num_inference_steps,
eta=0.1,
strength=strength,
guidance_scale=guidance_scale,
source_guidance_scale=source_guidance_scale,
)
return replace_nsfw_images(results)
def replace_nsfw_images(results):
for i in range(len(results.images)):
if results.nsfw_content_detected[i]:
results.images[i] = Image.open("nsfw.png")
return results.images[0]
css = """.cycle-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.cycle-diffusion-div div h1{font-weight:900;margin-bottom:7px}.cycle-diffusion-div p{margin-bottom:10px;font-size:94%}.cycle-diffusion-div p a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
f"""
<div class="cycle-diffusion-div">
<div>
<h1>CycleDiffusion with Stable Diffusion</h1>
</div>
<p>
Demo for CycleDiffusion with Stable Diffusion. <br>
CycleDiffusion (<a href="https://github.com/ChenWu98/cycle-diffusion">Github</a> | <a href="https://arxiv.org/abs/2210.05559">πŸ“„ Paper link</a> | <a href="https://huggingface.co/docs/diffusers/main/en/api/pipelines/cycle_diffusion">🧨 Pipeline doc</a>) is an image-to-image translation method that supports stochastic samplers for diffusion models. <br>
It also supports Cross Attention Control (<a href="https://github.com/google/prompt-to-prompt">Github</a> | <a href="https://arxiv.org/abs/2208.01626">πŸ“„ Paper link</a>), which is a technique to transfer the attention map from the source prompt to the target prompt. <br>
</p>
<p>You can skip the queue in the colab: <a href="https://colab.research.google.com/gist/ChenWu98/0aa4fe7be80f6b45d3d055df9f14353a/copy-of-fine-tuned-diffusion-gradio.ipynb"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p>
Running on <b>{device_print}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
</p>
</div>
"""
)
with gr.Row():
with gr.Column(scale=55):
with gr.Group():
img = gr.Image(label="Input image", height=512, tool="editor", type="pil")
image_out = gr.Image(label="Output image", height=512)
# gallery = gr.Gallery(
# label="Generated images", show_label=False, elem_id="gallery"
# ).style(grid=[1], height="auto")
with gr.Column(scale=45):
with gr.Tab("Edit options"):
with gr.Group():
with gr.Row():
source_prompt = gr.Textbox(label="Source prompt", placeholder="Source prompt describes the input image")
source_guidance_scale = gr.Slider(label="Source guidance scale", value=1, minimum=1, maximum=10)
with gr.Row():
target_prompt = gr.Textbox(label="Target prompt", placeholder="Target prompt describes the output image")
guidance_scale = gr.Slider(label="Target guidance scale", value=5, minimum=1, maximum=10)
with gr.Row():
strength = gr.Slider(label="Strength", value=0.7, minimum=0.5, maximum=1, step=0.01)
with gr.Row():
generate = gr.Button(value="Edit")
with gr.Tab("Basic options"):
with gr.Group():
with gr.Row():
num_inference_steps = gr.Slider(label="Number of inference steps", value=100, minimum=25, maximum=500, step=1)
width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)
with gr.Row():
seed = gr.Slider(0, 2147483647, label='Seed', value=0, step=1)
with gr.Tab("CAC options"):
with gr.Group():
with gr.Row():
cross_attention_control = gr.Radio(label="CAC type", choices=["None", "Replace", "Refine"], value="None")
with gr.Row():
# If not "None", the following two parameters will be used.
cross_replace_steps = gr.Slider(label="Cross replace steps", value=0.8, minimum=0.0, maximum=1, step=0.01)
self_replace_steps = gr.Slider(label="Self replace steps", value=0.4, minimum=0.0, maximum=1, step=0.01)
inputs = [source_prompt, target_prompt, source_guidance_scale, guidance_scale, num_inference_steps,
width, height, seed, img, strength,
cross_attention_control, cross_replace_steps, self_replace_steps]
generate.click(inference, inputs=inputs, outputs=image_out)
ex = gr.Examples(
[
["An astronaut riding a horse", "An astronaut riding an elephant", 1, 2, 100, "images/astronaut_horse.png", 0.8, "None", 0, 0],
["An astronaut riding a horse", "An astronaut riding a elephant", 1, 2, 100, "images/astronaut_horse.png", 0.9, "Replace", 0.15, 0.10],
["A black colored car.", "A blue colored car.", 1, 2, 100, "images/black_car.png", 0.85, "None", 0, 0],
["A black colored car.", "A blue colored car.", 1, 5, 100, "images/black_car.png", 0.95, "Replace", 0.8, 0.4],
["A black colored car.", "A red colored car.", 1, 5, 100, "images/black_car.png", 1, "Replace", 0.8, 0.4],
["An aerial view of autumn scene.", "An aerial view of winter scene.", 1, 5, 100, "images/mausoleum.png", 0.9, "None", 0.0, 0.0],
["An aerial view of autumn scene.", "An aerial view of winter scene.", 1, 5, 100, "images/mausoleum.png", 1, "Replace", 0.8, 0.4],
["A green apple and a black backpack on the floor.", "A red apple and a black backpack on the floor.", 1, 7, 100, "images/apple_bag.png", 0.9, "None", 0.0, 0.0],
["A green apple and a black backpack on the floor.", "A red apple and a black backpack on the floor.", 1, 7, 100, "images/apple_bag.png", 0.9, "Replace", 0.8, 0.4],
],
[source_prompt, target_prompt, source_guidance_scale, guidance_scale, num_inference_steps,
img, strength,
cross_attention_control, cross_replace_steps, self_replace_steps],
image_out, inference, cache_examples=False)
gr.Markdown('''
Space built with Diffusers 🧨 by HuggingFace πŸ€—.
[![Twitter Follow](https://img.shields.io/twitter/follow/ChenHenryWu?style=social)](https://twitter.com/ChenHenryWu)
![visitors](https://visitor-badge.glitch.me/badge?page_id=ChenWu98.CycleDiffusion)
''')
if not is_colab:
demo.queue(concurrency_count=1)
demo.launch(debug=is_colab, share=is_colab)