Spaces:
Runtime error
Runtime error
Update cac support
Browse files- app.py +2 -1
- ptp_utils.py +1 -156
app.py
CHANGED
@@ -282,7 +282,8 @@ with gr.Blocks(css=css) as demo:
|
|
282 |
</div>
|
283 |
<p>
|
284 |
Demo for CycleDiffusion with Stable Diffusion. <br>
|
285 |
-
<a href="https://
|
|
|
286 |
</p>
|
287 |
<p>You can skip the queue in the colab: <a href="https://colab.research.google.com/gist/ChenWu98/0aa4fe7be80f6b45d3d055df9f14353a/copy-of-fine-tuned-diffusion-gradio.ipynb"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p>
|
288 |
Running on <b>{device_print}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
|
|
|
282 |
</div>
|
283 |
<p>
|
284 |
Demo for CycleDiffusion with Stable Diffusion. <br>
|
285 |
+
CycleDiffusion (<a href="https://github.com/ChenWu98/cycle-diffusion">Github</a> | <a href="https://arxiv.org/abs/2210.05559">π Paper link</a> | <a href="https://huggingface.co/docs/diffusers/main/en/api/pipelines/cycle_diffusion">𧨠Pipeline doc</a>) is an image-to-image translation method that supports stochastic samplers for diffusion models. <br>
|
286 |
+
It also supports Cross Attention Control (<a href="https://github.com/google/prompt-to-prompt">Github</a> | <a href="https://arxiv.org/abs/2208.01626">π Paper link</a>), which is a technique to transfer the attention map from the source prompt to the target prompt. <br>
|
287 |
</p>
|
288 |
<p>You can skip the queue in the colab: <a href="https://colab.research.google.com/gist/ChenWu98/0aa4fe7be80f6b45d3d055df9f14353a/copy-of-fine-tuned-diffusion-gradio.ipynb"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p>
|
289 |
Running on <b>{device_print}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
|
ptp_utils.py
CHANGED
@@ -14,162 +14,7 @@
|
|
14 |
|
15 |
import numpy as np
|
16 |
import torch
|
17 |
-
from
|
18 |
-
import cv2
|
19 |
-
from typing import Optional, Union, Tuple, List, Callable, Dict
|
20 |
-
from IPython.display import display
|
21 |
-
from tqdm.notebook import tqdm
|
22 |
-
|
23 |
-
|
24 |
-
def text_under_image(image: np.ndarray, text: str, text_color: Tuple[int, int, int] = (0, 0, 0)):
|
25 |
-
h, w, c = image.shape
|
26 |
-
offset = int(h * .2)
|
27 |
-
img = np.ones((h + offset, w, c), dtype=np.uint8) * 255
|
28 |
-
font = cv2.FONT_HERSHEY_SIMPLEX
|
29 |
-
# font = ImageFont.truetype("/usr/share/fonts/truetype/noto/NotoMono-Regular.ttf", font_size)
|
30 |
-
img[:h] = image
|
31 |
-
textsize = cv2.getTextSize(text, font, 1, 2)[0]
|
32 |
-
text_x, text_y = (w - textsize[0]) // 2, h + offset - textsize[1] // 2
|
33 |
-
cv2.putText(img, text, (text_x, text_y ), font, 1, text_color, 2)
|
34 |
-
return img
|
35 |
-
|
36 |
-
|
37 |
-
def view_images(images, num_rows=1, offset_ratio=0.02):
|
38 |
-
if type(images) is list:
|
39 |
-
num_empty = len(images) % num_rows
|
40 |
-
elif images.ndim == 4:
|
41 |
-
num_empty = images.shape[0] % num_rows
|
42 |
-
else:
|
43 |
-
images = [images]
|
44 |
-
num_empty = 0
|
45 |
-
|
46 |
-
empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255
|
47 |
-
images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty
|
48 |
-
num_items = len(images)
|
49 |
-
|
50 |
-
h, w, c = images[0].shape
|
51 |
-
offset = int(h * offset_ratio)
|
52 |
-
num_cols = num_items // num_rows
|
53 |
-
image_ = np.ones((h * num_rows + offset * (num_rows - 1),
|
54 |
-
w * num_cols + offset * (num_cols - 1), 3), dtype=np.uint8) * 255
|
55 |
-
for i in range(num_rows):
|
56 |
-
for j in range(num_cols):
|
57 |
-
image_[i * (h + offset): i * (h + offset) + h:, j * (w + offset): j * (w + offset) + w] = images[
|
58 |
-
i * num_cols + j]
|
59 |
-
|
60 |
-
pil_img = Image.fromarray(image_)
|
61 |
-
display(pil_img)
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
def diffusion_step(model, controller, latents, context, t, guidance_scale, low_resource=False):
|
66 |
-
if low_resource:
|
67 |
-
noise_pred_uncond = model.unet(latents, t, encoder_hidden_states=context[0])["sample"]
|
68 |
-
noise_prediction_text = model.unet(latents, t, encoder_hidden_states=context[1])["sample"]
|
69 |
-
else:
|
70 |
-
latents_input = torch.cat([latents] * 2)
|
71 |
-
noise_pred = model.unet(latents_input, t, encoder_hidden_states=context)["sample"]
|
72 |
-
noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
|
73 |
-
noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
|
74 |
-
latents = model.scheduler.step(noise_pred, t, latents)["prev_sample"]
|
75 |
-
latents = controller.step_callback(latents)
|
76 |
-
return latents
|
77 |
-
|
78 |
-
|
79 |
-
def latent2image(vae, latents):
|
80 |
-
latents = 1 / 0.18215 * latents
|
81 |
-
image = vae.decode(latents)['sample']
|
82 |
-
image = (image / 2 + 0.5).clamp(0, 1)
|
83 |
-
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
84 |
-
image = (image * 255).astype(np.uint8)
|
85 |
-
return image
|
86 |
-
|
87 |
-
|
88 |
-
def init_latent(latent, model, height, width, generator, batch_size):
|
89 |
-
if latent is None:
|
90 |
-
latent = torch.randn(
|
91 |
-
(1, model.unet.in_channels, height // 8, width // 8),
|
92 |
-
generator=generator,
|
93 |
-
)
|
94 |
-
latents = latent.expand(batch_size, model.unet.in_channels, height // 8, width // 8).to(model.device)
|
95 |
-
return latent, latents
|
96 |
-
|
97 |
-
|
98 |
-
@torch.no_grad()
|
99 |
-
def text2image_ldm(
|
100 |
-
model,
|
101 |
-
prompt: List[str],
|
102 |
-
controller,
|
103 |
-
num_inference_steps: int = 50,
|
104 |
-
guidance_scale: Optional[float] = 7.,
|
105 |
-
generator: Optional[torch.Generator] = None,
|
106 |
-
latent: Optional[torch.FloatTensor] = None,
|
107 |
-
):
|
108 |
-
register_attention_control(model, controller)
|
109 |
-
height = width = 256
|
110 |
-
batch_size = len(prompt)
|
111 |
-
|
112 |
-
uncond_input = model.tokenizer([""] * batch_size, padding="max_length", max_length=77, return_tensors="pt")
|
113 |
-
uncond_embeddings = model.bert(uncond_input.input_ids.to(model.device))[0]
|
114 |
-
|
115 |
-
text_input = model.tokenizer(prompt, padding="max_length", max_length=77, return_tensors="pt")
|
116 |
-
text_embeddings = model.bert(text_input.input_ids.to(model.device))[0]
|
117 |
-
latent, latents = init_latent(latent, model, height, width, generator, batch_size)
|
118 |
-
context = torch.cat([uncond_embeddings, text_embeddings])
|
119 |
-
|
120 |
-
model.scheduler.set_timesteps(num_inference_steps)
|
121 |
-
for t in tqdm(model.scheduler.timesteps):
|
122 |
-
latents = diffusion_step(model, controller, latents, context, t, guidance_scale)
|
123 |
-
|
124 |
-
image = latent2image(model.vqvae, latents)
|
125 |
-
|
126 |
-
return image, latent
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
@torch.no_grad()
|
131 |
-
def text2image_ldm_stable(
|
132 |
-
model,
|
133 |
-
prompt: List[str],
|
134 |
-
controller,
|
135 |
-
num_inference_steps: int = 50,
|
136 |
-
guidance_scale: float = 7.5,
|
137 |
-
generator: Optional[torch.Generator] = None,
|
138 |
-
latent: Optional[torch.FloatTensor] = None,
|
139 |
-
low_resource: bool = False,
|
140 |
-
):
|
141 |
-
register_attention_control(model, controller)
|
142 |
-
height = width = 512
|
143 |
-
batch_size = len(prompt)
|
144 |
-
|
145 |
-
text_input = model.tokenizer(
|
146 |
-
prompt,
|
147 |
-
padding="max_length",
|
148 |
-
max_length=model.tokenizer.model_max_length,
|
149 |
-
truncation=True,
|
150 |
-
return_tensors="pt",
|
151 |
-
)
|
152 |
-
text_embeddings = model.text_encoder(text_input.input_ids.to(model.device))[0]
|
153 |
-
max_length = text_input.input_ids.shape[-1]
|
154 |
-
uncond_input = model.tokenizer(
|
155 |
-
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
156 |
-
)
|
157 |
-
uncond_embeddings = model.text_encoder(uncond_input.input_ids.to(model.device))[0]
|
158 |
-
|
159 |
-
context = [uncond_embeddings, text_embeddings]
|
160 |
-
if not low_resource:
|
161 |
-
context = torch.cat(context)
|
162 |
-
latent, latents = init_latent(latent, model, height, width, generator, batch_size)
|
163 |
-
|
164 |
-
# set timesteps
|
165 |
-
extra_set_kwargs = {"offset": 1}
|
166 |
-
model.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
|
167 |
-
for t in tqdm(model.scheduler.timesteps):
|
168 |
-
latents = diffusion_step(model, controller, latents, context, t, guidance_scale, low_resource)
|
169 |
-
|
170 |
-
image = latent2image(model.vae, latents)
|
171 |
-
|
172 |
-
return image, latent
|
173 |
|
174 |
|
175 |
def register_attention_control(model, controller):
|
|
|
14 |
|
15 |
import numpy as np
|
16 |
import torch
|
17 |
+
from typing import Optional, Union, Tuple, Dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
def register_attention_control(model, controller):
|