File size: 17,678 Bytes
6da2189
49c69e8
 
 
 
90d82c3
9fc2574
 
 
 
 
 
 
 
49c69e8
 
 
9fc2574
b84d23c
e602685
7138b0a
 
 
e602685
 
 
9fc2574
6da2189
e602685
 
49c69e8
9fc2574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49c69e8
 
e602685
9fc2574
 
49c69e8
e602685
49c69e8
 
e602685
 
9fc2574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06c55e8
 
 
 
 
 
 
 
 
e602685
06c55e8
49c69e8
6da2189
49c69e8
 
6da2189
 
49c69e8
 
6da2189
c9928a7
49c69e8
 
 
 
c9928a7
49c69e8
6da2189
49c69e8
 
06c55e8
3e4185b
 
49c69e8
c9928a7
9fc2574
49c69e8
 
 
 
 
 
e602685
49c69e8
 
4527b8b
49c69e8
4527b8b
e602685
 
 
49c69e8
e602685
9fc2574
e602685
57320b0
 
9fc2574
57320b0
 
e602685
 
 
49c69e8
e602685
9fc2574
 
 
 
 
e602685
 
49c69e8
4527b8b
 
9fc2574
 
 
06c55e8
9fc2574
 
 
 
 
49c69e8
e602685
9fc2574
 
49c69e8
 
e602685
 
9fc2574
 
 
 
 
 
 
 
 
e602685
9fc2574
 
 
e602685
49c69e8
 
06c55e8
8278e6d
5a0d186
49c69e8
 
 
6da2189
49c69e8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
from diffusers import CycleDiffusionPipeline, DDIMScheduler
import gradio as gr
import torch
from PIL import Image
import utils
import streamlit as st
import ptp_utils
import seq_aligner
import torch.nn.functional as nnf
from typing import Optional, Union, Tuple, List, Callable, Dict
import abc

LOW_RESOURCE = False
MAX_NUM_WORDS = 77

is_colab = utils.is_google_colab()


if True:
    model_id_or_path = "CompVis/stable-diffusion-v1-4"
    scheduler = DDIMScheduler.from_config(model_id_or_path,
                                          use_auth_token=st.secrets["USER_TOKEN"],
                                          subfolder="scheduler")
    pipe = CycleDiffusionPipeline.from_pretrained(model_id_or_path,
                                                  use_auth_token=st.secrets["USER_TOKEN"],
                                                  scheduler=scheduler)
    tokenizer = pipe.tokenizer

    if torch.cuda.is_available():
        pipe = pipe.to("cuda")

device_print = "GPU πŸ”₯" if torch.cuda.is_available() else "CPU πŸ₯Ά"
device = "cuda" if torch.cuda.is_available() else "cpu"


class LocalBlend:

    def __call__(self, x_t, attention_store):
        k = 1
        maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3]
        maps = [item.reshape(self.alpha_layers.shape[0], -1, 1, 16, 16, MAX_NUM_WORDS) for item in maps]
        maps = torch.cat(maps, dim=1)
        maps = (maps * self.alpha_layers).sum(-1).mean(1)
        mask = nnf.max_pool2d(maps, (k * 2 + 1, k * 2 + 1), (1, 1), padding=(k, k))
        mask = nnf.interpolate(mask, size=(x_t.shape[2:]))
        mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0]
        mask = mask.gt(self.threshold)
        mask = (mask[:1] + mask[1:]).float()
        x_t = x_t[:1] + mask * (x_t - x_t[:1])
        return x_t

    def __init__(self, prompts: List[str], words: [List[List[str]]], threshold=.3):
        alpha_layers = torch.zeros(len(prompts),  1, 1, 1, 1, MAX_NUM_WORDS)
        for i, (prompt, words_) in enumerate(zip(prompts, words)):
            if type(words_) is str:
                words_ = [words_]
            for word in words_:
                ind = ptp_utils.get_word_inds(prompt, word, tokenizer)
                alpha_layers[i, :, :, :, :, ind] = 1
        self.alpha_layers = alpha_layers.to(device)
        self.threshold = threshold


class AttentionControl(abc.ABC):

    def step_callback(self, x_t):
        return x_t

    def between_steps(self):
        return

    @property
    def num_uncond_att_layers(self):
        return self.num_att_layers if LOW_RESOURCE else 0

    @abc.abstractmethod
    def forward(self, attn, is_cross: bool, place_in_unet: str):
        raise NotImplementedError

    def __call__(self, attn, is_cross: bool, place_in_unet: str):
        if self.cur_att_layer >= self.num_uncond_att_layers:
            if LOW_RESOURCE:
                attn = self.forward(attn, is_cross, place_in_unet)
            else:
                h = attn.shape[0]
                attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet)
        self.cur_att_layer += 1
        if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers:
            self.cur_att_layer = 0
            self.cur_step += 1
            self.between_steps()
        return attn

    def reset(self):
        self.cur_step = 0
        self.cur_att_layer = 0

    def __init__(self):
        self.cur_step = 0
        self.num_att_layers = -1
        self.cur_att_layer = 0


class EmptyControl(AttentionControl):

    def forward(self, attn, is_cross: bool, place_in_unet: str):
        return attn


class AttentionStore(AttentionControl):

    @staticmethod
    def get_empty_store():
        return {"down_cross": [], "mid_cross": [], "up_cross": [],
                "down_self": [],  "mid_self": [],  "up_self": []}

    def forward(self, attn, is_cross: bool, place_in_unet: str):
        key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
        if attn.shape[1] <= 32 ** 2:  # avoid memory overhead
            self.step_store[key].append(attn)
        return attn

    def between_steps(self):
        if len(self.attention_store) == 0:
            self.attention_store = self.step_store
        else:
            for key in self.attention_store:
                for i in range(len(self.attention_store[key])):
                    self.attention_store[key][i] += self.step_store[key][i]
        self.step_store = self.get_empty_store()

    def get_average_attention(self):
        average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store}
        return average_attention

    def reset(self):
        super(AttentionStore, self).reset()
        self.step_store = self.get_empty_store()
        self.attention_store = {}

    def __init__(self):
        super(AttentionStore, self).__init__()
        self.step_store = self.get_empty_store()
        self.attention_store = {}


class AttentionControlEdit(AttentionStore, abc.ABC):

    def step_callback(self, x_t):
        if self.local_blend is not None:
            x_t = self.local_blend(x_t, self.attention_store)
        return x_t

    def replace_self_attention(self, attn_base, att_replace):
        if att_replace.shape[2] <= 16 ** 2:
            return attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape)
        else:
            return att_replace

    @abc.abstractmethod
    def replace_cross_attention(self, attn_base, att_replace):
        raise NotImplementedError

    def forward(self, attn, is_cross: bool, place_in_unet: str):
        super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet)
        if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]):
            h = attn.shape[0] // self.batch_size
            attn = attn.reshape(self.batch_size, h, *attn.shape[1:])
            attn_base, attn_repalce = attn[0], attn[1:]
            if is_cross:
                alpha_words = self.cross_replace_alpha[self.cur_step]
                attn_replace_new = self.replace_cross_attention(attn_base, attn_repalce) * alpha_words + (1 - alpha_words) * attn_repalce
                attn[1:] = attn_replace_new
            else:
                attn[1:] = self.replace_self_attention(attn_base, attn_repalce)
            attn = attn.reshape(self.batch_size * h, *attn.shape[2:])
        return attn

    def __init__(self, prompts, num_steps: int,
                 cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]],
                 self_replace_steps: Union[float, Tuple[float, float]],
                 local_blend: Optional[LocalBlend]):
        super(AttentionControlEdit, self).__init__()
        self.batch_size = len(prompts)
        self.cross_replace_alpha = ptp_utils.get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps, tokenizer).to(device)
        if type(self_replace_steps) is float:
            self_replace_steps = 0, self_replace_steps
        self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1])
        self.local_blend = local_blend


class AttentionReplace(AttentionControlEdit):

    def replace_cross_attention(self, attn_base, att_replace):
        return torch.einsum('hpw,bwn->bhpn', attn_base, self.mapper)

    def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float,
                 local_blend: Optional[LocalBlend] = None):
        super(AttentionReplace, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
        self.mapper = seq_aligner.get_replacement_mapper(prompts, tokenizer).to(device)


class AttentionRefine(AttentionControlEdit):

    def replace_cross_attention(self, attn_base, att_replace):
        attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3)
        attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas)
        return attn_replace

    def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float,
                 local_blend: Optional[LocalBlend] = None):
        super(AttentionRefine, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
        self.mapper, alphas = seq_aligner.get_refinement_mapper(prompts, tokenizer)
        self.mapper, alphas = self.mapper.to(device), alphas.to(device)
        self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1])


def get_equalizer(text: str, word_select: Union[int, Tuple[int, ...]], values: Union[List[float], Tuple[float, ...]]):
    if type(word_select) is int or type(word_select) is str:
        word_select = (word_select,)
    equalizer = torch.ones(len(values), 77)
    values = torch.tensor(values, dtype=torch.float32)
    for word in word_select:
        inds = ptp_utils.get_word_inds(text, word, tokenizer)
        equalizer[:, inds] = values
    return equalizer


def inference(source_prompt, target_prompt, source_guidance_scale=1, guidance_scale=5, num_inference_steps=100,
              width=512, height=512, seed=0, img=None, strength=0.7,
              cross_attention_control=None, cross_replace_steps=0.8, self_replace_steps=0.4):

    torch.manual_seed(seed)

    ratio = min(height / img.height, width / img.width)
    img = img.resize((int(img.width * ratio), int(img.height * ratio)))

    # create the CAC controller.
    if cross_attention_control == "replace":
        controller = AttentionReplace([source_prompt, target_prompt],
                                      num_inference_steps,
                                      cross_replace_steps=cross_replace_steps,
                                      self_replace_steps=self_replace_steps,
                                      )
        ptp_utils.register_attention_control(pipe, controller)
    elif cross_attention_control == "refine":
        controller = AttentionRefine([source_prompt, target_prompt],
                                     num_inference_steps,
                                     cross_replace_steps=cross_replace_steps,
                                     self_replace_steps=self_replace_steps,
                                     )
        ptp_utils.register_attention_control(pipe, controller)

    results = pipe(prompt=target_prompt,
                   source_prompt=source_prompt,
                   init_image=img,
                   num_inference_steps=num_inference_steps,
                   eta=0.1,
                   strength=strength,
                   guidance_scale=guidance_scale,
                   source_guidance_scale=source_guidance_scale,
                   )

    return replace_nsfw_images(results)


def replace_nsfw_images(results):
    for i in range(len(results.images)):
        if results.nsfw_content_detected[i]:
            results.images[i] = Image.open("nsfw.png")
    return results.images[0]


css = """.cycle-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.cycle-diffusion-div div h1{font-weight:900;margin-bottom:7px}.cycle-diffusion-div p{margin-bottom:10px;font-size:94%}.cycle-diffusion-div p a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
"""
with gr.Blocks(css=css) as demo:
    gr.HTML(
        f"""
            <div class="cycle-diffusion-div">
              <div>
                <h1>CycleDiffusion with Stable Diffusion</h1>
              </div>
              <p>
                Demo for CycleDiffusion with Stable Diffusion. <br>
                CycleDiffusion (<a href="https://github.com/ChenWu98/cycle-diffusion">Github</a> | <a href="https://arxiv.org/abs/2210.05559">πŸ“„ Paper link</a> | <a href="https://huggingface.co/docs/diffusers/main/en/api/pipelines/cycle_diffusion">🧨 Pipeline doc</a>) is an image-to-image translation method that supports stochastic samplers for diffusion models. <br>
                It also supports Cross Attention Control (<a href="https://github.com/google/prompt-to-prompt">Github</a> | <a href="https://arxiv.org/abs/2208.01626">πŸ“„ Paper link</a>), which is a technique to transfer the attention map from the source prompt to the target prompt. <br>
              </p>
              <p>You can skip the queue in the colab: <a href="https://colab.research.google.com/gist/ChenWu98/0aa4fe7be80f6b45d3d055df9f14353a/copy-of-fine-tuned-diffusion-gradio.ipynb"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p>
               Running on <b>{device_print}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
              </p>
            </div>
        """
    )
    with gr.Row():

        with gr.Column(scale=55):
            with gr.Group():

                img = gr.Image(label="Input image", height=512, tool="editor", type="pil")

                image_out = gr.Image(label="Output image", height=512)
                # gallery = gr.Gallery(
                #     label="Generated images", show_label=False, elem_id="gallery"
                # ).style(grid=[1], height="auto")

        with gr.Column(scale=45):
            with gr.Tab("Edit options"):
                with gr.Group():
                    with gr.Row():
                        source_prompt = gr.Textbox(label="Source prompt", placeholder="Source prompt describes the input image")
                        source_guidance_scale = gr.Slider(label="Source guidance scale", value=1, minimum=1, maximum=10)
                    with gr.Row():
                        target_prompt = gr.Textbox(label="Target prompt", placeholder="Target prompt describes the output image")
                        guidance_scale = gr.Slider(label="Target guidance scale", value=5, minimum=1, maximum=10)
                    with gr.Row():
                        strength = gr.Slider(label="Strength", value=0.7, minimum=0.5, maximum=1, step=0.01)

                    with gr.Row():
                        generate = gr.Button(value="Edit")
            with gr.Tab("Basic options"):
                with gr.Group():
                    with gr.Row():
                        num_inference_steps = gr.Slider(label="Number of inference steps", value=100, minimum=25, maximum=500, step=1)
                        width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
                        height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)

                    with gr.Row():
                        seed = gr.Slider(0, 2147483647, label='Seed', value=0, step=1)

            with gr.Tab("CAC options"):
                with gr.Group():
                    with gr.Row():
                        cross_attention_control = gr.Radio(label="CAC type", choices=["None", "Replace", "Refine"], value="None")
                    with gr.Row():
                        # If not "None", the following two parameters will be used.
                        cross_replace_steps = gr.Slider(label="Cross replace steps", value=0.8, minimum=0.0, maximum=1, step=0.01)
                        self_replace_steps = gr.Slider(label="Self replace steps", value=0.4, minimum=0.0, maximum=1, step=0.01)

    inputs = [source_prompt, target_prompt, source_guidance_scale, guidance_scale, num_inference_steps,
              width, height, seed, img, strength,
              cross_attention_control, cross_replace_steps, self_replace_steps]
    generate.click(inference, inputs=inputs, outputs=image_out)

    ex = gr.Examples(
        [
            ["An astronaut riding a horse", "An astronaut riding an elephant", 1, 2, 100, "images/astronaut_horse.png", 0.8, "None", 0, 0],
            ["An astronaut riding a horse", "An astronaut riding a elephant", 1, 2, 100, "images/astronaut_horse.png", 0.9, "Replace", 0.15, 0.10],
            ["A black colored car.", "A blue colored car.", 1, 2, 100, "images/black_car.png", 0.85, "None", 0, 0],
            ["A black colored car.", "A blue colored car.", 1, 5, 100, "images/black_car.png", 0.95, "Replace", 0.8, 0.4],
            ["A black colored car.", "A red colored car.", 1, 5, 100, "images/black_car.png", 1, "Replace", 0.8, 0.4],
            ["An aerial view of autumn scene.", "An aerial view of winter scene.", 1, 5, 100, "images/mausoleum.png", 0.9, "None", 0.0, 0.0],
            ["An aerial view of autumn scene.", "An aerial view of winter scene.", 1, 5, 100, "images/mausoleum.png", 1, "Replace", 0.8, 0.4],
            ["A green apple and a black backpack on the floor.", "A red apple and a black backpack on the floor.", 1, 7, 100, "images/apple_bag.png", 0.9, "None", 0.0, 0.0],
            ["A green apple and a black backpack on the floor.", "A red apple and a black backpack on the floor.", 1, 7, 100, "images/apple_bag.png", 0.9, "Replace", 0.8, 0.4],
        ],
        [source_prompt, target_prompt, source_guidance_scale, guidance_scale, num_inference_steps,
         img, strength,
         cross_attention_control, cross_replace_steps, self_replace_steps],
        image_out, inference, cache_examples=False)

    gr.Markdown('''
      Space built with Diffusers 🧨 by HuggingFace πŸ€—.
      [![Twitter Follow](https://img.shields.io/twitter/follow/ChenHenryWu?style=social)](https://twitter.com/ChenHenryWu) 
      ![visitors](https://visitor-badge.glitch.me/badge?page_id=ChenWu98.CycleDiffusion)
    ''')

if not is_colab:
    demo.queue(concurrency_count=1)
demo.launch(debug=is_colab, share=is_colab)