Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
from sklearn.preprocessing import MinMaxScaler | |
import pickle | |
import Streamlit_functions as sf | |
from utilities import load_authenticator | |
from utilities_with_panel import (set_header, | |
overview_test_data_prep_panel, | |
overview_test_data_prep_nonpanel, | |
initialize_data, | |
load_local_css, | |
create_channel_summary, | |
create_contribution_pie, | |
create_contribuion_stacked_plot, | |
create_channel_spends_sales_plot, | |
format_numbers, | |
channel_name_formating) | |
import plotly.graph_objects as go | |
import streamlit_authenticator as stauth | |
import yaml | |
from yaml import SafeLoader | |
import time | |
from datetime import datetime | |
st.set_page_config(layout='wide') | |
load_local_css('styles.css') | |
set_header() | |
st.title("Model Result Overview") | |
def get_random_effects(media_data, panel_col, mdf): | |
random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"]) | |
for i, market in enumerate(media_data[panel_col].unique()): | |
print(i, end='\r') | |
intercept = mdf.random_effects[market].values[0] | |
random_eff_df.loc[i, 'random_effect'] = intercept | |
random_eff_df.loc[i, panel_col] = market | |
return random_eff_df | |
def process_train_and_test(train, test, features, panel_col, target_col): | |
X1 = train[features] | |
ss = MinMaxScaler() | |
X1 = pd.DataFrame(ss.fit_transform(X1), columns=X1.columns) | |
X1[panel_col] = train[panel_col] | |
X1[target_col] = train[target_col] | |
if test is not None: | |
X2 = test[features] | |
X2 = pd.DataFrame(ss.transform(X2), columns=X2.columns) | |
X2[panel_col] = test[panel_col] | |
X2[target_col] = test[target_col] | |
return X1, X2 | |
return X1 | |
def mdf_predict(X_df, mdf, random_eff_df) : | |
X=X_df.copy() | |
X=pd.merge(X, random_eff_df[[panel_col,'random_effect']], on=panel_col, how='left') | |
X['pred_fixed_effect'] = mdf.predict(X) | |
X['pred'] = X['pred_fixed_effect'] + X['random_effect'] | |
X.to_csv('Test/merged_df_contri.csv',index=False) | |
X.drop(columns=['pred_fixed_effect', 'random_effect'], inplace=True) | |
return X | |
target_col='Prospects' | |
target='Prospects' | |
# is_panel=False | |
# is_panel = st.session_state['is_panel'] | |
#panel_col = [col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in st.session_state['bin_dict']['Panel Level 1'] ] [0]# set the panel column | |
panel_col='Panel' | |
date_col = 'date' | |
#st.write(media_data) | |
is_panel = True | |
# panel_col='markets' | |
date_col = 'date' | |
for k, v in st.session_state.items(): | |
if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'): | |
st.session_state[k] = v | |
authenticator = st.session_state.get('authenticator') | |
if authenticator is None: | |
authenticator = load_authenticator() | |
name, authentication_status, username = authenticator.login('Login', 'main') | |
auth_status = st.session_state['authentication_status'] | |
if auth_status: | |
authenticator.logout('Logout', 'main') | |
is_state_initiaized = st.session_state.get('initialized',False) | |
if not is_state_initiaized: | |
a=1 | |
# st.header("") | |
# st.markdown("<h5 style='font-weight: normal;'>MMM Readout for Selected Period</h5>", unsafe_allow_html=True) | |
#### Input Select Start and End Date | |
# Create two columns for start date and end date input | |
col1, col2 = st.columns(2) | |
# now = datetime.now() | |
# us_format = now.strftime("%m/%d/%Y") | |
with col1: | |
default_date = datetime(2024, 1, 28) | |
start_date = st.date_input("Start Date: ",value=default_date) | |
with col2: | |
default_date = datetime(2024, 2, 24) | |
end_date = st.date_input("End Date: ",value = default_date) | |
# col1, col2 = st.columns(2) | |
# with col1: | |
# fig = sf.pie_spend(start_date,end_date) | |
# st.plotly_chart(fig,use_container_width=True) | |
# with col2: | |
# fig = sf.pie_contributions(start_date,end_date) | |
# st.plotly_chart(fig,use_container_width=True) | |
# st.header("Distribution of Spends and Contributions") | |
fig = sf.pie_charts(start_date,end_date) | |
st.plotly_chart(fig,use_container_width=True) | |
# Dropdown menu options | |
options = [ | |
"Month on Month", | |
"Year on Year"] | |
col1, col2 = st.columns(2) | |
# Create a dropdown menu | |
with col1: | |
selected_option = st.selectbox('Select a comparison', options) | |
with col2: | |
st.markdown("""</br>""",unsafe_allow_html=True) | |
if selected_option == "Month on Month" : | |
st.markdown( | |
f""" | |
<div style="padding: 5px; border-radius: 5px; background-color: #FFFFE0; width: fit-content; display: inline-block;"> | |
<strong> Comparision of current month spends to previous month spends</strong> | |
</div> | |
""", | |
unsafe_allow_html=True | |
) | |
else : | |
st.markdown( | |
f""" | |
<div style="padding: 5px; border-radius: 5px; background-color: #FFFFE0; width: fit-content; display: inline-block;"> | |
<strong> Comparision of current month spends to the same month in previous year</strong> | |
</div> | |
""", | |
unsafe_allow_html=True | |
) | |
# Waterfall chart | |
fig = sf.waterfall(start_date,end_date,selected_option) | |
st.plotly_chart(fig,use_container_width=True) | |
# Waterfall table | |
shares_df = sf.shares_df_func(start_date,end_date) | |
st.table(sf.waterfall_table_func(shares_df).style.format("{:.0%}")) | |
## Channel Contribution Bar Chart | |
st.plotly_chart(sf.channel_contribution(start_date,end_date),use_container_width=True) | |
st.plotly_chart(sf.chanel_spends(start_date,end_date),use_container_width=True) | |
# Format first three rows in percentage format | |
# styled_df = sf.shares_table_func(shares_df) | |
# # styled_df = styled_df.round(0).astype(int) | |
# styled_df.iloc[:3] = (styled_df.iloc[:3]).astype(int) | |
# # Round next two rows to two decimal places | |
# styled_df.iloc[3:5] = styled_df.iloc[3:5].round(0).astype(str) | |
# st.table(styled_df) | |
st.dataframe(sf.shares_table_func(shares_df),use_container_width=True) | |
st.dataframe(sf.eff_table_func(shares_df).style.format({"TOTAL SPEND": "{:,.0f}", "TOTAL SUPPORT": "{:,.0f}", "TOTAL CONTRIBUTION": "{:,.0f}"}),use_container_width=True) | |
### CPP CHART | |
st.plotly_chart(sf.cpp(start_date,end_date),use_container_width=True) | |
### Base decomp CHART | |
st.plotly_chart(sf.base_decomp(),use_container_width=True) | |
### Media decomp CHART | |
st.plotly_chart(sf.media_decomp(),use_container_width=True) | |
# st.write(fig.columns) | |
# st.dataframe(fig) | |
# def panel_fetch(file_selected): | |
# raw_data_mmm_df = pd.read_excel(file_selected, sheet_name="RAW DATA MMM") | |
# if "Panel" in raw_data_mmm_df.columns: | |
# panel = list(set(raw_data_mmm_df["Panel"])) | |
# else: | |
# raw_data_mmm_df = None | |
# panel = None | |
# return panel | |
# def rerun(): | |
# st.rerun() | |
# metrics_selected='prospects' | |
# file_selected = ( | |
# f"Overview_data_test_panel@#{metrics_selected}.xlsx" | |
# ) | |
# panel_list = panel_fetch(file_selected) | |
# if "selected_markets" not in st.session_state: | |
# st.session_state['selected_markets']='DMA1' | |
# st.header('Overview of previous spends') | |
# selected_market= st.selectbox( | |
# "Select Markets", | |
# ["Total Market"] + panel_list | |
# ) | |
# initialize_data(target_col,selected_market) | |
# scenario = st.session_state['scenario'] | |
# raw_df = st.session_state['raw_df'] | |
# st.write(scenario.actual_total_spends) | |
# st.write(scenario.actual_total_sales) | |
# columns = st.columns((1,1,3)) | |
# with columns[0]: | |
# st.metric(label='Spends', value=format_numbers(float(scenario.actual_total_spends))) | |
# ###print(f"##################### {scenario.actual_total_sales} ##################") | |
# with columns[1]: | |
# st.metric(label=target, value=format_numbers(float(scenario.actual_total_sales),include_indicator=False)) | |
# actual_summary_df = create_channel_summary(scenario) | |
# actual_summary_df['Channel'] = actual_summary_df['Channel'].apply(channel_name_formating) | |
# columns = st.columns((2,1)) | |
# #with columns[0]: | |
# with st.expander('Channel wise overview'): | |
# st.markdown(actual_summary_df.style.set_table_styles( | |
# [{ | |
# 'selector': 'th', | |
# 'props': [('background-color', '#FFFFF')] | |
# }, | |
# { | |
# 'selector' : 'tr:nth-child(even)', | |
# 'props' : [('background-color', '#FFFFF')] | |
# }]).to_html(), unsafe_allow_html=True) | |
# st.markdown("<hr>",unsafe_allow_html=True) | |
# ############################## | |
# st.plotly_chart(create_contribution_pie(scenario),use_container_width=True) | |
# st.markdown("<hr>",unsafe_allow_html=True) | |
# ################################3 | |
# st.plotly_chart(create_contribuion_stacked_plot(scenario),use_container_width=True) | |
# st.markdown("<hr>",unsafe_allow_html=True) | |
# ####################################### | |
# selected_channel_name = st.selectbox('Channel', st.session_state['channels_list'] + ['non media'], format_func=channel_name_formating) | |
# selected_channel = scenario.channels.get(selected_channel_name,None) | |
# st.plotly_chart(create_channel_spends_sales_plot(selected_channel), use_container_width=True) | |
# st.markdown("<hr>",unsafe_allow_html=True) | |
# elif auth_status == False: | |
# st.error('Username/Password is incorrect') | |
# if auth_status != True: | |
# try: | |
# username_forgot_pw, email_forgot_password, random_password = authenticator.forgot_password('Forgot password') | |
# if username_forgot_pw: | |
# st.success('New password sent securely') | |
# # Random password to be transferred to user securely | |
# elif username_forgot_pw == False: | |
# st.error('Username not found') | |
# except Exception as e: | |
# st.error(e) | |
# st.header("") | |
# st.markdown("<h5 style='font-weight: normal;'>MMM Readout for Selected Period</h5>", unsafe_allow_html=True) | |
# #### Input Select Start and End Date | |
# # Create two columns for start date and end date input | |
# col1, col2 = st.columns(2) | |
# with col1: | |
# start_date = st.date_input("Start Date: ") | |
# with col2: | |
# end_date = st.date_input("End Date: ") | |
# # Dropdown menu options | |
# options = [ | |
# "Month on Month", | |
# "Year on Year"] | |
# col1, col2 = st.columns(2) | |
# # Create a dropdown menu | |
# with col1: | |
# selected_option = st.selectbox('Select a comparison', options) | |
# with col2: | |
# st.write("") | |
# # Waterfall chart | |
# fig = sf.waterfall(start_date,end_date,selected_option) | |
# st.plotly_chart(fig) | |
# # Waterfall table | |
# shares_df = sf.shares_df_func(start_date,end_date) | |
# st.table(sf.waterfall_table_func(shares_df).style.format("{:.0%}")) | |
# ## Channel Contribution Bar Chart | |
# st.plotly_chart(sf.channel_contribution(start_date,end_date)) | |
# # Format first three rows in percentage format | |
# # styled_df = sf.shares_table_func(shares_df) | |
# # # styled_df = styled_df.round(0).astype(int) | |
# # styled_df.iloc[:3] = (styled_df.iloc[:3]).astype(int) | |
# # # Round next two rows to two decimal places | |
# # styled_df.iloc[3:5] = styled_df.iloc[3:5].round(0).astype(str) | |
# # st.table(styled_df) | |
# st.dataframe(sf.shares_table_func(shares_df)) | |
# st.dataframe(sf.eff_table_func(shares_df)) | |
# ### CPP CHART | |
# st.plotly_chart(sf.cpp(start_date,end_date)) | |
# ### Base decomp CHART | |
# st.plotly_chart(sf.base_decomp()) | |
# ### Media decomp CHART | |
# st.plotly_chart(sf.media_decomp()) |