Spaces:
Sleeping
Sleeping
File size: 12,648 Bytes
46d2500 85d2c7e 46d2500 4b04bdf 46d2500 f4e26b8 46d2500 85d2c7e f4e26b8 85d2c7e f4e26b8 85d2c7e 230c66a 85d2c7e 230c66a f4e26b8 85d2c7e a7b3ed8 85d2c7e a7b3ed8 85d2c7e f4e26b8 85d2c7e f4e26b8 85d2c7e f4e26b8 85d2c7e a7b3ed8 46d2500 85d2c7e 46d2500 85d2c7e 46d2500 85d2c7e 46d2500 85d2c7e 46d2500 85d2c7e 46d2500 85d2c7e 46d2500 85d2c7e 46d2500 85d2c7e 46d2500 85d2c7e 46d2500 85d2c7e 46d2500 85d2c7e 46d2500 85d2c7e 46d2500 85d2c7e 46d2500 85d2c7e 46d2500 85d2c7e 46d2500 85d2c7e 46d2500 85d2c7e 46d2500 85d2c7e a7b3ed8 85d2c7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
import streamlit as st
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
import pickle
import Streamlit_functions as sf
from utilities import load_authenticator
from utilities_with_panel import (set_header,
overview_test_data_prep_panel,
overview_test_data_prep_nonpanel,
initialize_data,
load_local_css,
create_channel_summary,
create_contribution_pie,
create_contribuion_stacked_plot,
create_channel_spends_sales_plot,
format_numbers,
channel_name_formating)
import plotly.graph_objects as go
import streamlit_authenticator as stauth
import yaml
from yaml import SafeLoader
import time
from datetime import datetime
st.set_page_config(layout='wide')
load_local_css('styles.css')
set_header()
st.title("Model Result Overview")
def get_random_effects(media_data, panel_col, mdf):
random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"])
for i, market in enumerate(media_data[panel_col].unique()):
print(i, end='\r')
intercept = mdf.random_effects[market].values[0]
random_eff_df.loc[i, 'random_effect'] = intercept
random_eff_df.loc[i, panel_col] = market
return random_eff_df
def process_train_and_test(train, test, features, panel_col, target_col):
X1 = train[features]
ss = MinMaxScaler()
X1 = pd.DataFrame(ss.fit_transform(X1), columns=X1.columns)
X1[panel_col] = train[panel_col]
X1[target_col] = train[target_col]
if test is not None:
X2 = test[features]
X2 = pd.DataFrame(ss.transform(X2), columns=X2.columns)
X2[panel_col] = test[panel_col]
X2[target_col] = test[target_col]
return X1, X2
return X1
def mdf_predict(X_df, mdf, random_eff_df) :
X=X_df.copy()
X=pd.merge(X, random_eff_df[[panel_col,'random_effect']], on=panel_col, how='left')
X['pred_fixed_effect'] = mdf.predict(X)
X['pred'] = X['pred_fixed_effect'] + X['random_effect']
X.to_csv('Test/merged_df_contri.csv',index=False)
X.drop(columns=['pred_fixed_effect', 'random_effect'], inplace=True)
return X
target_col='Prospects'
target='Prospects'
# is_panel=False
# is_panel = st.session_state['is_panel']
#panel_col = [col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in st.session_state['bin_dict']['Panel Level 1'] ] [0]# set the panel column
panel_col='Panel'
date_col = 'date'
#st.write(media_data)
is_panel = True
# panel_col='markets'
date_col = 'date'
for k, v in st.session_state.items():
if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
st.session_state[k] = v
authenticator = st.session_state.get('authenticator')
if authenticator is None:
authenticator = load_authenticator()
name, authentication_status, username = authenticator.login('Login', 'main')
auth_status = st.session_state['authentication_status']
if auth_status:
authenticator.logout('Logout', 'main')
is_state_initiaized = st.session_state.get('initialized',False)
if not is_state_initiaized:
a=1
# st.header("")
# st.markdown("<h5 style='font-weight: normal;'>MMM Readout for Selected Period</h5>", unsafe_allow_html=True)
#### Input Select Start and End Date
# Create two columns for start date and end date input
col1, col2 = st.columns(2)
# now = datetime.now()
# us_format = now.strftime("%m/%d/%Y")
with col1:
default_date = datetime(2024, 1, 28)
start_date = st.date_input("Start Date: ",value=default_date)
with col2:
default_date = datetime(2024, 2, 24)
end_date = st.date_input("End Date: ",value = default_date)
# col1, col2 = st.columns(2)
# with col1:
# fig = sf.pie_spend(start_date,end_date)
# st.plotly_chart(fig,use_container_width=True)
# with col2:
# fig = sf.pie_contributions(start_date,end_date)
# st.plotly_chart(fig,use_container_width=True)
# st.header("Distribution of Spends and Contributions")
fig = sf.pie_charts(start_date,end_date)
st.plotly_chart(fig,use_container_width=True)
# Dropdown menu options
options = [
"Month on Month",
"Year on Year"]
col1, col2 = st.columns(2)
# Create a dropdown menu
with col1:
selected_option = st.selectbox('Select a comparison', options)
with col2:
st.markdown("""</br>""",unsafe_allow_html=True)
if selected_option == "Month on Month" :
st.markdown(
f"""
<div style="padding: 5px; border-radius: 5px; background-color: #FFFFE0; width: fit-content; display: inline-block;">
<strong> Comparision of current month spends to previous month spends</strong>
</div>
""",
unsafe_allow_html=True
)
else :
st.markdown(
f"""
<div style="padding: 5px; border-radius: 5px; background-color: #FFFFE0; width: fit-content; display: inline-block;">
<strong> Comparision of current month spends to the same month in previous year</strong>
</div>
""",
unsafe_allow_html=True
)
# Waterfall chart
fig = sf.waterfall(start_date,end_date,selected_option)
st.plotly_chart(fig,use_container_width=True)
# Waterfall table
shares_df = sf.shares_df_func(start_date,end_date)
st.table(sf.waterfall_table_func(shares_df).style.format("{:.0%}"))
## Channel Contribution Bar Chart
st.plotly_chart(sf.channel_contribution(start_date,end_date),use_container_width=True)
st.plotly_chart(sf.chanel_spends(start_date,end_date),use_container_width=True)
# Format first three rows in percentage format
# styled_df = sf.shares_table_func(shares_df)
# # styled_df = styled_df.round(0).astype(int)
# styled_df.iloc[:3] = (styled_df.iloc[:3]).astype(int)
# # Round next two rows to two decimal places
# styled_df.iloc[3:5] = styled_df.iloc[3:5].round(0).astype(str)
# st.table(styled_df)
st.dataframe(sf.shares_table_func(shares_df),use_container_width=True)
st.dataframe(sf.eff_table_func(shares_df).style.format({"TOTAL SPEND": "{:,.0f}", "TOTAL SUPPORT": "{:,.0f}", "TOTAL CONTRIBUTION": "{:,.0f}"}),use_container_width=True)
### CPP CHART
st.plotly_chart(sf.cpp(start_date,end_date),use_container_width=True)
### Base decomp CHART
st.plotly_chart(sf.base_decomp(),use_container_width=True)
### Media decomp CHART
st.plotly_chart(sf.media_decomp(),use_container_width=True)
# st.write(fig.columns)
# st.dataframe(fig)
# def panel_fetch(file_selected):
# raw_data_mmm_df = pd.read_excel(file_selected, sheet_name="RAW DATA MMM")
# if "Panel" in raw_data_mmm_df.columns:
# panel = list(set(raw_data_mmm_df["Panel"]))
# else:
# raw_data_mmm_df = None
# panel = None
# return panel
# def rerun():
# st.rerun()
# metrics_selected='prospects'
# file_selected = (
# f"Overview_data_test_panel@#{metrics_selected}.xlsx"
# )
# panel_list = panel_fetch(file_selected)
# if "selected_markets" not in st.session_state:
# st.session_state['selected_markets']='DMA1'
# st.header('Overview of previous spends')
# selected_market= st.selectbox(
# "Select Markets",
# ["Total Market"] + panel_list
# )
# initialize_data(target_col,selected_market)
# scenario = st.session_state['scenario']
# raw_df = st.session_state['raw_df']
# st.write(scenario.actual_total_spends)
# st.write(scenario.actual_total_sales)
# columns = st.columns((1,1,3))
# with columns[0]:
# st.metric(label='Spends', value=format_numbers(float(scenario.actual_total_spends)))
# ###print(f"##################### {scenario.actual_total_sales} ##################")
# with columns[1]:
# st.metric(label=target, value=format_numbers(float(scenario.actual_total_sales),include_indicator=False))
# actual_summary_df = create_channel_summary(scenario)
# actual_summary_df['Channel'] = actual_summary_df['Channel'].apply(channel_name_formating)
# columns = st.columns((2,1))
# #with columns[0]:
# with st.expander('Channel wise overview'):
# st.markdown(actual_summary_df.style.set_table_styles(
# [{
# 'selector': 'th',
# 'props': [('background-color', '#FFFFF')]
# },
# {
# 'selector' : 'tr:nth-child(even)',
# 'props' : [('background-color', '#FFFFF')]
# }]).to_html(), unsafe_allow_html=True)
# st.markdown("<hr>",unsafe_allow_html=True)
# ##############################
# st.plotly_chart(create_contribution_pie(scenario),use_container_width=True)
# st.markdown("<hr>",unsafe_allow_html=True)
# ################################3
# st.plotly_chart(create_contribuion_stacked_plot(scenario),use_container_width=True)
# st.markdown("<hr>",unsafe_allow_html=True)
# #######################################
# selected_channel_name = st.selectbox('Channel', st.session_state['channels_list'] + ['non media'], format_func=channel_name_formating)
# selected_channel = scenario.channels.get(selected_channel_name,None)
# st.plotly_chart(create_channel_spends_sales_plot(selected_channel), use_container_width=True)
# st.markdown("<hr>",unsafe_allow_html=True)
# elif auth_status == False:
# st.error('Username/Password is incorrect')
# if auth_status != True:
# try:
# username_forgot_pw, email_forgot_password, random_password = authenticator.forgot_password('Forgot password')
# if username_forgot_pw:
# st.success('New password sent securely')
# # Random password to be transferred to user securely
# elif username_forgot_pw == False:
# st.error('Username not found')
# except Exception as e:
# st.error(e)
# st.header("")
# st.markdown("<h5 style='font-weight: normal;'>MMM Readout for Selected Period</h5>", unsafe_allow_html=True)
# #### Input Select Start and End Date
# # Create two columns for start date and end date input
# col1, col2 = st.columns(2)
# with col1:
# start_date = st.date_input("Start Date: ")
# with col2:
# end_date = st.date_input("End Date: ")
# # Dropdown menu options
# options = [
# "Month on Month",
# "Year on Year"]
# col1, col2 = st.columns(2)
# # Create a dropdown menu
# with col1:
# selected_option = st.selectbox('Select a comparison', options)
# with col2:
# st.write("")
# # Waterfall chart
# fig = sf.waterfall(start_date,end_date,selected_option)
# st.plotly_chart(fig)
# # Waterfall table
# shares_df = sf.shares_df_func(start_date,end_date)
# st.table(sf.waterfall_table_func(shares_df).style.format("{:.0%}"))
# ## Channel Contribution Bar Chart
# st.plotly_chart(sf.channel_contribution(start_date,end_date))
# # Format first three rows in percentage format
# # styled_df = sf.shares_table_func(shares_df)
# # # styled_df = styled_df.round(0).astype(int)
# # styled_df.iloc[:3] = (styled_df.iloc[:3]).astype(int)
# # # Round next two rows to two decimal places
# # styled_df.iloc[3:5] = styled_df.iloc[3:5].round(0).astype(str)
# # st.table(styled_df)
# st.dataframe(sf.shares_table_func(shares_df))
# st.dataframe(sf.eff_table_func(shares_df))
# ### CPP CHART
# st.plotly_chart(sf.cpp(start_date,end_date))
# ### Base decomp CHART
# st.plotly_chart(sf.base_decomp())
# ### Media decomp CHART
# st.plotly_chart(sf.media_decomp()) |