File size: 16,515 Bytes
cca49ed
227bc73
33134ab
27b9ec6
a5c228f
27b9ec6
227bc73
eb70fb9
 
 
5af50c2
eb70fb9
 
20ab0d7
df19679
 
144d1bc
13ddf33
675f0fd
 
20ab0d7
 
c2aa7b8
 
 
 
 
 
 
120744d
c2aa7b8
 
 
face198
20ab0d7
 
c2aa7b8
 
 
077e79a
a4a2927
eb70fb9
 
 
1292897
 
125e8b0
 
 
 
 
 
30904d8
3ac5b04
eb70fb9
 
 
 
 
 
 
 
 
b70627f
 
b9c3563
 
 
b70627f
 
2ccc154
eb70fb9
 
 
 
 
8c1a982
2ccc154
f6a7265
2ccc154
 
ee2a691
6849eaf
bf0653b
8a8bae7
6849eaf
a9fb385
 
3106c6d
 
 
 
7e70b6c
cdf45cd
5d8910b
 
 
 
7e70b6c
cdf45cd
217d984
5d8910b
a9fb385
ee2a691
 
 
 
 
 
 
 
 
 
1292897
6849eaf
 
 
 
 
3ac5b04
72a5e4c
fe9701a
1203789
f6a7265
 
 
 
3ac5b04
6849eaf
06ea014
6849eaf
 
3ac5b04
0675e76
3ac5b04
2efc4a3
1203789
5d8910b
6849eaf
 
dc7a5fd
 
016261b
dc7a5fd
6849eaf
 
3ac5b04
dc7a5fd
3ac5b04
dc7a5fd
 
3ac5b04
dc7a5fd
baec09d
 
 
 
217d984
0730b0c
217d984
 
 
dc7a5fd
 
 
217d984
 
 
 
 
 
 
138cc18
 
217d984
3ac5b04
 
217d984
3ac5b04
c05d7f5
6849eaf
7a7af62
6849eaf
 
 
 
 
 
3ac5b04
6849eaf
 
 
3ac5b04
c895fa2
217d984
6849eaf
3ac5b04
6849eaf
3ac5b04
6849eaf
 
 
 
 
 
3ac5b04
6849eaf
3ac5b04
6849eaf
 
 
 
7413101
 
6849eaf
 
 
 
085b63a
 
 
 
 
 
 
 
 
6849eaf
8884d81
6849eaf
 
 
d01522b
 
 
 
 
 
 
 
217d984
d01522b
 
6849eaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbeeb27
6849eaf
 
33134ab
6849eaf
1c4d585
6849eaf
7f47b42
6849eaf
 
c5f9216
 
 
 
 
 
d0bdc78
c5f9216
 
 
 
bde2989
c5f9216
 
 
 
 
 
 
 
 
 
 
d0bdc78
c5f9216
 
 
 
bde2989
c5f9216
 
 
 
 
 
 
 
 
 
 
d0bdc78
c5f9216
 
 
 
bde2989
c5f9216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bde2989
c5f9216
 
 
 
 
63d4b87
 
 
 
 
 
d0bdc78
63d4b87
 
 
 
bde2989
63d4b87
 
 
 
 
 
 
 
 
 
 
d0bdc78
63d4b87
 
 
 
bde2989
63d4b87
 
 
6849eaf
63d4b87
 
 
 
 
 
 
d0bdc78
63d4b87
 
 
 
bde2989
63d4b87
 
 
6849eaf
63d4b87
 
 
 
 
 
 
d0bdc78
63d4b87
 
 
 
bde2989
63d4b87
 
 
6849eaf
63d4b87
217d984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4a2927
2cf3b99
c2aa7b8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
import spaces
import gradio as gr
import argparse
import sys
import time
import os
import random

from skyreelsinfer.offload import Offload, OffloadConfig
from skyreelsinfer.pipelines import SkyreelsVideoPipeline
from skyreelsinfer import TaskType
#from skyreelsinfer.skyreels_video_infer import SkyReelsVideoSingleGpuInfer

from diffusers import HunyuanVideoTransformer3DModel
from diffusers.utils import export_to_video
from diffusers.utils import load_image
from PIL import Image
import numpy as np
from torchao.quantization import float8_weight_only
from torchao.quantization import quantize_
from transformers import LlamaModel

import torch

torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
torch.backends.cuda.preferred_blas_library="cublas"
torch.backends.cuda.preferred_linalg_library="cusolver"
torch.set_float32_matmul_precision("highest")

torch.backends.cuda.enable_cudnn_sdp(False) # Still a good idea to keep it.

os.putenv("HF_HUB_ENABLE_HF_TRANSFER","1")
os.environ["SAFETENSORS_FAST_GPU"] = "1"

os.putenv("TOKENIZERS_PARALLELISM","False")

model_id = "Skywork/SkyReels-V1-Hunyuan-I2V"
base_model_id = "hunyuanvideo-community/HunyuanVideo"

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

offload_config=OffloadConfig(
    high_cpu_memory=True,
    parameters_level=True,
    compiler_transformer=False,
)

def init_predictor():
    global pipe
    text_encoder = LlamaModel.from_pretrained(
        base_model_id,
        subfolder="text_encoder",
        torch_dtype=torch.bfloat16,
    ).to("cpu")
    transformer = HunyuanVideoTransformer3DModel.from_pretrained(
        model_id,
        # subfolder="transformer",
        torch_dtype=torch.bfloat16,
        #device="cpu",
    ).to("cuda").eval()
    #quantize_(text_encoder, float8_weight_only(), device="cpu")
    #text_encoder.to("cpu")
    #torch.cuda.empty_cache()
    #quantize_(transformer, float8_weight_only(), device="cpu")
    #transformer.to("cuda")
    #torch.cuda.empty_cache()
    pipe = SkyreelsVideoPipeline.from_pretrained(
        base_model_id,
        transformer=transformer,
        text_encoder=text_encoder,
        torch_dtype=torch.bfloat16,
    ) #.to("cpu")
    pipe.vae.to('cpu')
    pipe.vae.enable_tiling()
    torch.cuda.empty_cache()

negative_prompt = "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion"

@spaces.GPU(duration=90)
def generate(segment, image, prompt, size, guidance_scale, num_inference_steps, frames, seed, progress=gr.Progress(track_tqdm=True) ):
    if segment==1:
        random.seed(time.time())
        seed = int(random.randrange(4294967294))
        #Offload.offload(
        #    pipeline=pipe,
        #    config=offload_config,
        #)
        pipe.text_encoder.to("cuda")
        pipe.text_encoder_2.to("cuda")
        with torch.no_grad():
            prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_attention_mask, pooled_prompt_embeds, negative_pooled_prompt_embeds = pipe.encode_prompt(
                prompt=prompt, do_classifier_free_guidance=True, negative_prompt=negative_prompt, device=device
            )
        pipe.text_encoder.to("cpu")
        pipe.text_encoder_2.to("cpu")
        #pipe.trasformer.to('cuda')
        torch.cuda.empty_cache()
        generator = torch.Generator(device='cuda').manual_seed(seed)
        transformer_dtype = pipe.transformer.dtype
        prompt_embeds = prompt_embeds.to(transformer_dtype)
        prompt_attention_mask = prompt_attention_mask.to(transformer_dtype)
        pooled_prompt_embeds = pooled_prompt_embeds.to(transformer_dtype)
        negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
        negative_attention_mask = negative_attention_mask.to(transformer_dtype)
        negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.to(transformer_dtype)
        prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
        prompt_attention_mask = torch.cat([negative_attention_mask, prompt_attention_mask])
        pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds])
        pipe.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = pipe.scheduler.timesteps
        all_timesteps_cpu = timesteps.cpu()
        timesteps_split_np = np.array_split(all_timesteps_cpu.numpy(), 8)
        segment_timesteps = torch.from_numpy(timesteps_split_np[0]).to("cuda")
        num_channels_latents = pipe.transformer.config.in_channels
        num_channels_latents = int(num_channels_latents / 2)
        image = Image.open(image).convert('RGB')
        image.resize((size,size), Image.LANCZOS)
        pipe.vae.to("cuda")
        with torch.no_grad():
            image = pipe.video_processor.preprocess(image, height=size, width=size).to(
                device, dtype=prompt_embeds.dtype
            )
        num_latent_frames = (frames - 1) // pipe.vae_scale_factor_temporal + 1
        latents = pipe.prepare_latents(
            batch_size=1, num_channels_latents=num_channels_latents, height=size, width=size, num_frames=frames,
            dtype=torch.float32, device=device, generator=generator, latents=None,
        )
        image_latents = pipe.image_latents(
                image, 1, size, size, device, torch.float32, num_channels_latents, num_latent_frames
        )
        image_latents = image_latents.to("cuda", pipe.transformer.dtype)
        pipe.vae.to("cpu")
        torch.cuda.empty_cache()
        guidance = torch.tensor([guidance_scale] * latents.shape[0], dtype=transformer_dtype, device=device) * 1000.0
    else:
        pipe.vae.to("cpu")
        torch.cuda.empty_cache()
        transformer_dtype = pipe.transformer.dtype
        state_file = f"SkyReel_{segment-1}_{seed}.pt"
        state = torch.load(state_file, weights_only=False)
        generator = torch.Generator(device='cuda').manual_seed(seed)
        latents = state["intermediate_latents"].to("cuda", dtype=torch.bfloat16)
        guidance_scale = state["guidance_scale"]
        all_timesteps_cpu = state["all_timesteps"]
        size = state["height"]
        size = state["width"]
        pipe.scheduler.set_timesteps(len(all_timesteps_cpu), device=device)
        timesteps_split_np = np.array_split(all_timesteps_cpu.numpy(), 8)
        prompt_embeds = state["prompt_embeds"].to("cuda", dtype=torch.bfloat16)
        pooled_prompt_embeds = state["pooled_prompt_embeds"].to("cuda", dtype=torch.bfloat16)
        prompt_attention_mask = state["prompt_attention_mask"].to("cuda", dtype=torch.bfloat16)
        image_latents = state["image_latents"].to("cuda", dtype=torch.bfloat16)
    if segment==9:
        pipe.transformer.to('cpu')
        torch.cuda.empty_cache()
        pipe.vae.to("cuda")
        latents = latents.to(pipe.vae.dtype) / pipe.vae.config.scaling_factor
        #with torch.no_grad():
        video = pipe.vae.decode(latents, return_dict=False)[0]
        video = pipe.video_processor.postprocess_video(video)
        # return HunyuanVideoPipelineOutput(frames=video)
        save_dir = f"./"
        video_out_file = f"{save_dir}/{seed}.mp4"
        print(f"generate video, local path: {video_out_file}")
        export_to_video(output, video_out_file, fps=24)
        return video_out_file, seed
    else:
        segment_timesteps = torch.from_numpy(timesteps_split_np[segment - 1]).to("cuda")
        guidance = torch.tensor([guidance_scale] * latents.shape[0], dtype=transformer_dtype, device=device) * 1000.0
        for i, t in enumerate(pipe.progress_bar(segment_timesteps)):
                latents = latents.to(transformer_dtype)
                latent_model_input = torch.cat([latents] * 2)
                latent_image_input = (torch.cat([image_latents] * 2))        
                latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=1)
                timestep = t.repeat(latent_model_input.shape[0]).to(torch.float32)
                with torch.no_grad():
                  noise_pred = pipe.transformer(
                    hidden_states=latent_model_input,
                    timestep=timestep,
                    encoder_hidden_states=prompt_embeds,
                    encoder_attention_mask=prompt_attention_mask,
                    pooled_projections=pooled_prompt_embeds,
                    guidance=guidance,
                    #   attention_kwargs=attention_kwargs,
                    return_dict=False,
                  )[0]
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
                latents = pipe.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
        intermediate_latents_cpu = latents.detach().cpu()
        original_prompt_embeds_cpu = prompt_embeds.cpu()
        original_image_latents_cpu = image_latents.cpu()
        original_pooled_prompt_embeds_cpu = pooled_prompt_embeds.cpu()
        original_prompt_attention_mask_cpu = prompt_attention_mask.cpu()
        timesteps = pipe.scheduler.timesteps
        all_timesteps_cpu = timesteps.cpu() # Move to CPU
        state = {
            "intermediate_latents": intermediate_latents_cpu,
            "all_timesteps": all_timesteps_cpu, # Save full list generated by scheduler
            "prompt_embeds": original_prompt_embeds_cpu, # Save ORIGINAL embeds
            "image_latents": original_image_latents_cpu,
            "pooled_prompt_embeds": original_pooled_prompt_embeds_cpu,
            "prompt_attention_mask": original_prompt_attention_mask_cpu,
            "guidance_scale": guidance_scale,
            "seed": seed,
            "prompt": prompt, # Save originals for reference/verification
            "negative_prompt": negative_prompt,
            "height": size, # Save dimensions used
            "width": size
        }
        state_file = f"SkyReel_{segment}_{seed}.pt"
        torch.save(state, state_file)
        return None, seed
        
def update_ranges(total_steps):
    """Calculates and updates the ranges for the 8 slave sliders."""
    step_size = total_steps // 8  # Calculate the size of each segment
    ranges = []
    for i in range(8):
        lower_bound = i * step_size
        ranges.append([lower_bound])  # Add the range to the list
    return ranges
    
with gr.Blocks() as demo:
        with gr.Row():
            image = gr.Image(label="Upload Image", type="filepath")
            prompt = gr.Textbox(label="Input Prompt")
            run_button_1 = gr.Button("Run Segment 1", scale=0)
            run_button_2 = gr.Button("Run Segment 2", scale=0)
            run_button_3 = gr.Button("Run Segment 3", scale=0)
            run_button_4 = gr.Button("Run Segment 4", scale=0)
            run_button_5 = gr.Button("Run Segment 5", scale=0)
            run_button_6 = gr.Button("Run Segment 6", scale=0)
            run_button_7 = gr.Button("Run Segment 7", scale=0)
            run_button_8 = gr.Button("Run Segment 8", scale=0)
            run_button_9 = gr.Button("Run Decode Video", scale=0)
            result = gr.Gallery(label="Result", columns=1, show_label=False)
            seed = gr.Number(value=1, label="Seed")
            size = gr.Slider(
                label="Size",
                minimum=256,
                maximum=1024,
                step=16,
                value=368,
            )
            frames = gr.Slider(
                label="Number of Frames",
                minimum=16,
                maximum=256,
                step=8,
                value=64,
            )
            steps = gr.Slider(
                label="Number of Steps",
                minimum=1,
                maximum=96,
                step=1,
                value=25,
            )
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=1.0,
                maximum=16.0,
                step=.1,
                value=6.0,
            )
        submit_button = gr.Button("Generate Video")
        output_video = gr.Video(label="Generated Video")
        range_sliders = []
        for i in range(8):
            slider = gr.Slider(
                minimum=1,
                maximum=250,
                value=[i * (steps.value // 8)],
                step=1,
                label=f"Range {i + 1}",
            )
            range_sliders.append(slider)
        steps.change(
        update_ranges,
        inputs=steps,
        outputs=range_sliders,
        )
        gr.on(
            triggers=[
                run_button_1.click,
            ],
            fn=generate,
            inputs=[
                gr.Number(value=1),
                image,
                prompt,
                size,
                guidance_scale,
                steps,
                frames,
                seed,
            ],
            outputs=[result, seed],
        )
        gr.on(
            triggers=[
                run_button_2.click,
            ],
            fn=generate,
            inputs=[
                gr.Number(value=2),
                image,
                prompt,
                size,
                guidance_scale,
                steps,
                frames,
                seed,
            ],
            outputs=[result, seed],
        )
        gr.on(
            triggers=[
                run_button_3.click,
            ],
            fn=generate,
            inputs=[
                gr.Number(value=3),
                image,
                prompt,
                size,
                guidance_scale,
                steps,
                frames,
                seed,
            ],
            outputs=[result, seed],
        )
        gr.on(
            triggers=[
                run_button_4.click,
            ],
            fn=generate,
            inputs=[
                gr.Number(value=4),
                image,
                prompt,
                size,
                guidance_scale,
                steps,
                frames,
                seed,
            ],
            outputs=[result, seed],
        )
        gr.on(
            triggers=[
                run_button_5.click,
            ],
            fn=generate,
            inputs=[
                gr.Number(value=5),
                image,
                prompt,
                size,
                guidance_scale,
                steps,
                frames,
                seed,
            ],
            outputs=[result, seed],
        )
        gr.on(
            triggers=[
                run_button_6.click,
            ],
            fn=generate,
            inputs=[
                gr.Number(value=6),
                image,
                prompt,
                size,
                guidance_scale,
                steps,
                frames,
                seed,
            ],
        outputs=[result, seed],
        )
        gr.on(
            triggers=[
                run_button_7.click,
            ],
            fn=generate,
            inputs=[
                gr.Number(value=7),
                image,
                prompt,
                size,
                guidance_scale,
                steps,
                frames,
                seed,
            ],
        outputs=[result, seed],
        )
        gr.on(
            triggers=[
                run_button_8.click,
            ],
            fn=generate,
            inputs=[
                gr.Number(value=8),
                image,
                prompt,
                size,
                guidance_scale,
                steps,
                frames,
                seed,
            ],
        outputs=[result, seed],
        )
        gr.on(
            triggers=[
                run_button_9.click,
            ],
            fn=generate,
            inputs=[
                gr.Number(value=9),
                image,
                prompt,
                size,
                guidance_scale,
                steps,
                frames,
                seed,
            ],
        outputs=[result, seed],
        )
if __name__ == "__main__":
    init_predictor()
    demo.launch()