Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,9 +5,14 @@ import sys
|
|
5 |
import time
|
6 |
import os
|
7 |
import random
|
8 |
-
|
|
|
|
|
|
|
9 |
from skyreelsinfer import TaskType
|
10 |
-
|
|
|
|
|
11 |
from diffusers.utils import export_to_video
|
12 |
from diffusers.utils import load_image
|
13 |
from PIL import Image
|
@@ -29,19 +34,29 @@ os.environ["SAFETENSORS_FAST_GPU"] = "1"
|
|
29 |
|
30 |
os.putenv("TOKENIZERS_PARALLELISM","False")
|
31 |
|
|
|
|
|
|
|
32 |
def init_predictor():
|
33 |
global pipe
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
@spaces.GPU(duration=60)
|
47 |
def generate(segment, image, prompt, size, guidance_scale, num_inference_steps, frames, seed, progress=gr.Progress(track_tqdm=True) ):
|
|
|
5 |
import time
|
6 |
import os
|
7 |
import random
|
8 |
+
|
9 |
+
from skyreelsinfer.offload import Offload, OffloadConfig
|
10 |
+
from skyreelsinfer.pipelines import SkyreelsVideoPipeline
|
11 |
+
|
12 |
from skyreelsinfer import TaskType
|
13 |
+
|
14 |
+
#from skyreelsinfer.skyreels_video_infer import SkyReelsVideoSingleGpuInfer
|
15 |
+
|
16 |
from diffusers.utils import export_to_video
|
17 |
from diffusers.utils import load_image
|
18 |
from PIL import Image
|
|
|
34 |
|
35 |
os.putenv("TOKENIZERS_PARALLELISM","False")
|
36 |
|
37 |
+
model_id = "Skywork/SkyReels-V1-Hunyuan-I2V"
|
38 |
+
base_model_id = "hunyuanvideo-community/HunyuanVideo"
|
39 |
+
|
40 |
def init_predictor():
|
41 |
global pipe
|
42 |
+
text_encoder = LlamaModel.from_pretrained(
|
43 |
+
base_model_id,
|
44 |
+
subfolder="text_encoder",
|
45 |
+
torch_dtype=torch.bfloat16,
|
46 |
+
).to("cpu")
|
47 |
+
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
|
48 |
+
model_id,
|
49 |
+
# subfolder="transformer",
|
50 |
+
torch_dtype=torch.bfloat16,
|
51 |
+
device="cpu",
|
52 |
+
).to("cpu").eval()
|
53 |
+
pipe = SkyreelsVideoPipeline.from_pretrained(
|
54 |
+
base_model_id,
|
55 |
+
transformer=transformer,
|
56 |
+
text_encoder=text_encoder,
|
57 |
+
torch_dtype=torch.bfloat16,
|
58 |
+
).to("cpu")
|
59 |
+
pipe.to(torch.device('cuda'))
|
60 |
|
61 |
@spaces.GPU(duration=60)
|
62 |
def generate(segment, image, prompt, size, guidance_scale, num_inference_steps, frames, seed, progress=gr.Progress(track_tqdm=True) ):
|