Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -91,7 +91,6 @@ def generate(segment, image, prompt, size, guidance_scale, num_inference_steps,
|
|
91 |
prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_attention_mask, pooled_prompt_embeds, negative_pooled_prompt_embeds = pipe.encode_prompt(
|
92 |
prompt=prompt, do_classifier_free_guidance=True, negative_prompt=negative_prompt, device=device
|
93 |
)
|
94 |
-
|
95 |
transformer_dtype = pipe.transformer.dtype
|
96 |
prompt_embeds = prompt_embeds.to(transformer_dtype)
|
97 |
prompt_attention_mask = prompt_attention_mask.to(transformer_dtype)
|
@@ -102,7 +101,6 @@ def generate(segment, image, prompt, size, guidance_scale, num_inference_steps,
|
|
102 |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
103 |
prompt_attention_mask = torch.cat([negative_attention_mask, prompt_attention_mask])
|
104 |
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds])
|
105 |
-
|
106 |
pipe.scheduler.set_timesteps(num_inference_steps, device=device)
|
107 |
timesteps = pipe.scheduler.timesteps
|
108 |
all_timesteps_cpu = timesteps.cpu()
|
@@ -110,6 +108,8 @@ def generate(segment, image, prompt, size, guidance_scale, num_inference_steps,
|
|
110 |
segment_timesteps = torch.from_numpy(timesteps_split_np[0]).to("cuda")
|
111 |
num_channels_latents = pipe.transformer.config.in_channels
|
112 |
num_channels_latents = int(num_channels_latents / 2)
|
|
|
|
|
113 |
image = pipe.video_processor.preprocess(image, height=size, width=size).to(
|
114 |
device, dtype=prompt_embeds.dtype
|
115 |
)
|
|
|
91 |
prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_attention_mask, pooled_prompt_embeds, negative_pooled_prompt_embeds = pipe.encode_prompt(
|
92 |
prompt=prompt, do_classifier_free_guidance=True, negative_prompt=negative_prompt, device=device
|
93 |
)
|
|
|
94 |
transformer_dtype = pipe.transformer.dtype
|
95 |
prompt_embeds = prompt_embeds.to(transformer_dtype)
|
96 |
prompt_attention_mask = prompt_attention_mask.to(transformer_dtype)
|
|
|
101 |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
102 |
prompt_attention_mask = torch.cat([negative_attention_mask, prompt_attention_mask])
|
103 |
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds])
|
|
|
104 |
pipe.scheduler.set_timesteps(num_inference_steps, device=device)
|
105 |
timesteps = pipe.scheduler.timesteps
|
106 |
all_timesteps_cpu = timesteps.cpu()
|
|
|
108 |
segment_timesteps = torch.from_numpy(timesteps_split_np[0]).to("cuda")
|
109 |
num_channels_latents = pipe.transformer.config.in_channels
|
110 |
num_channels_latents = int(num_channels_latents / 2)
|
111 |
+
image = Image.open(image.name).convert('RGB')
|
112 |
+
image.resize((size,size), Image.LANCZOS)
|
113 |
image = pipe.video_processor.preprocess(image, height=size, width=size).to(
|
114 |
device, dtype=prompt_embeds.dtype
|
115 |
)
|